An overview of the first decade of Polly NET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

Abstract. A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/ . The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Angstrom exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

[1]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[2]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[3]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[4]  James D. Spinhirne,et al.  Compact Eye Safe Lidar Systems , 1995 .

[5]  A. Bucholtz,et al.  Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.

[6]  Ellsworth J. Welton,et al.  Global monitoring of clouds and aerosols using a network of micropulse lidar systems , 2001, SPIE Asia-Pacific Remote Sensing.

[7]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[8]  A. Ansmann,et al.  Experimental determination of the lidar overlap profile with Raman lidar. , 2002, Applied optics.

[9]  Tomohiro Nagai,et al.  Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. , 2003, Applied optics.

[10]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[11]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004 .

[12]  Albert Ansmann,et al.  Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus , 2004 .

[13]  A. Stohl,et al.  Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003 : Microphysical particle characterization , 2005 .

[14]  J. Streicher,et al.  Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[15]  L. Isaksen,et al.  THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .

[16]  Albert Ansmann,et al.  High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer , 2005 .

[17]  Y. H. Zhang,et al.  Strong particle light absorption over the Pearl River Delta (south China) and Beijing (north China) determined from combined Raman lidar and Sun photometer observations , 2006 .

[18]  Anatoli Chaikovsky,et al.  Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions , 2006, Atmospheric and Ocean Optics.

[19]  Oleg A. Krasnov,et al.  Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations , 2007 .

[20]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[21]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[22]  Albert Ansmann,et al.  Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China. , 2007, Applied optics.

[23]  Chenbo Xie,et al.  Lidar network observations of tropospheric aerosols , 2008, Asia-Pacific Remote Sensing.

[24]  Retrieval of microphysical properties of aerosol particles from one-wavelength Raman lidar and multiwavelength Sun photometer observations , 2008 .

[25]  Volker Freudenthaler,et al.  The telecover test: A quality assurance tool for the optical part of a lidar system , 2008 .

[26]  Albert Ansmann,et al.  Continuous monitoring of the boundary-layer top with lidar , 2008 .

[27]  J. Baldasano,et al.  Regional dust model performance during SAMUM 2006 , 2009, Geophysical Research Letters.

[28]  Albert Ansmann,et al.  Portable Raman Lidar Polly XT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization , 2009 .

[29]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[30]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[31]  V. Freudenthaler Lidar Rayleigh-fit criteria , 2009 .

[32]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[33]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[34]  R. Engelmann,et al.  Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure , 2010 .

[35]  Albert Ansmann,et al.  Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination , 2010 .

[36]  W. Thomas,et al.  Aerosol profiling using the ceilometer network of the German Meteorological Service , 2010 .

[37]  D. Ie,et al.  Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde , 2011 .

[38]  R. Engelmann,et al.  Further evidence for significant smoke transport from Africa to Amazonia , 2011 .

[39]  J. Guerrero-Rascado,et al.  Multi‐instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal , 2011 .

[40]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[41]  R. Engelmann,et al.  Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation , 2011 .

[42]  L. Alados-Arboledas,et al.  Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations , 2011 .

[43]  A.J.H. Visschedijk,et al.  General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales , 2011 .

[44]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[45]  R. Engelmann,et al.  One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations , 2012 .

[46]  Ina Mattis,et al.  RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. , 2012, Applied optics.

[47]  R. Engelmann,et al.  Aerosol profiling with lidar in the Amazon Basin during the wet and dry season , 2012 .

[48]  Optical porperties of free tropospheric aerosol from multi-wavelength raman lidars over the southern Iberian Peninsula , 2012 .

[49]  T. Kanitz Vertical distribution of aerosols above the Atlantic Ocean, Punta Arenas (Chile), and Stellenbosch (South Africa). Characterization, solar radiative effects and ice nucleating properties , 2012 .

[50]  Comissão Nacional de Energia,et al.  LIDAR COMMUNITY IN LATIN AMERICA: A DECADE OF CHALLENGES AND SUCCESSES , 2012 .

[51]  A. Szkop,et al.  Ceilometer observations of the boundary layer over Warsaw, Poland , 2012, Acta Geophysica.

[52]  Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground‐based observations , 2013 .

[53]  R. Engelmann,et al.  The Spectral Aerosol Extinction Monitoring System (SǼMS): setup, observational products, and comparisons , 2013 .

[54]  Ana Maria Silva,et al.  Vertically resolved optical and microphysical properties of Portuguese forest fire smoke observed in February 2012 , 2013, Remote Sensing.

[55]  R. Engelmann,et al.  Radiative effect of aerosols above the northern and southern Atlantic Ocean as determined from shipborne lidar observations , 2013 .

[56]  Dietrich Althausen,et al.  PollyNET: a network of multiwavelength polarization Raman lidars , 2013, Remote Sensing.

[57]  R. Engelmann,et al.  Atmospheric boundary layer top height in South Africa: measurements with lidar and radiosonde compared to three atmospheric models , 2013 .

[58]  K. Lehtinen,et al.  Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network , 2013 .

[59]  A. M. Silva,et al.  Two years of free‐tropospheric aerosol layers observed over Portugal by lidar , 2013 .

[60]  R. Engelmann,et al.  North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises , 2013, Journal of geophysical research. Atmospheres : JGR.

[61]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .

[62]  Characterization of cirrus clouds in central Amazon (2.89ºS, 59.97ºW): firsts results from observations in 2011 , 2014 .

[63]  Albert Ansmann,et al.  Tracking the Saharan Air Layer with shipborne lidar across the tropical Atlantic , 2014 .

[64]  H. Baars,et al.  ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer , 2014 .

[65]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[66]  R. Engelmann,et al.  Surface matters: limitations of CALIPSO V3 aerosol typing in coastal regions , 2014 .

[67]  The first ALINE measurements and intercomparison exercise on lidar inversion algorithms , 2014 .

[68]  Nobuo Sugimoto,et al.  Characterization of aerosols in East Asia with the Asian Dust and Aerosol Lidar Observation Network (AD-Net) , 2014, Asia-Pacific Environmental Remote Sensing.

[69]  A. M. Silva,et al.  Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties , 2014, TheScientificWorldJournal.

[70]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[71]  A. Schwarz Aerosol typing over Europe and its benefits for the CALIPSO and EarthCARE missions , 2015 .

[72]  L. Mona,et al.  LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET , 2015 .

[73]  A. Ansmann,et al.  Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters , 2015 .

[74]  Diofantos G. Hadjimitsis,et al.  EARLINET: potential operationality of a research network , 2015 .

[75]  V. Freudenthaler,et al.  EARLINET instrument intercomparison campaigns: overview on strategy and results , 2015 .

[76]  Ulla Wandinger,et al.  EARLINET Single Calculus Chain - overview on methodology and strategy , 2015 .

[77]  R. Engelmann,et al.  Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin , 2015 .

[78]  V. Freudenthaler,et al.  Towards an aerosol classification scheme for future EarthCARE lidar observations and implications for research needs , 2015 .

[79]  L. Mona,et al.  A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals , 2015 .

[80]  K. Lehtinen,et al.  One year of Raman lidar observations of free-tropospheric aerosol layers over South Africa , 2015 .

[81]  P. Di Girolamo,et al.  Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE , 2015 .

[82]  R. Engelmann,et al.  Lidar Measurements of Canadian Forest Fire Smoke Episode Observed in July 2013 over Warsaw, Poland , 2016 .

[83]  Albert Ansmann,et al.  The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation , 2016 .

[84]  V. Freudenthaler,et al.  Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator , 2016 .

[85]  Volker Freudenthaler,et al.  About the effects of polarising optics on lidar signals and the Δ90 calibration , 2016 .

[86]  D. Althausen,et al.  AEROSOL PROPERTIES OVER SOUTHEASTERN CHINA FROM MULTI-WAVELENGTH RAMAN AND DEPOLARIZATION LIDAR MEASUREMENTS , 2016 .

[87]  V. Freudenthaler,et al.  Experimental assessment of the lidar polarizing sensitivity , 2016 .

[88]  Klaus Backhaus,et al.  Multivariate Analysemethoden - Eine anwendungsorientierte Einführung , 2018 .