Low Temperature Synthesis of Cu2O Crystals: Shape Evolution and Growth Mechanism

An interesting shape evolution of Cu2O crystals, that is, from cubes, truncated octahedra, octahedra, and finally to nanospheres was first realized in high yield by reducing the copper−citrate complex solution with glucose. X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) techniques were employed to characterize the samples. We elucidate the important parameters (including poly (vinyl pyrrolidone) (PVP) concentration, reaction time, and reaction temperature) responsible for the shape-controlled synthesis of Cu2O crystals. The possible formation mechanism for the products with various architectures is presented, which is mainly based on the variation of the ratio (R) of the growth rates along the ⟨100⟩ and ⟨111⟩ direction. In addition, the effect of the low supersaturation on the formation of star-shaped samples with six symmetric branches is also taken into account. This polymer-mediated method should be readi...

[1]  P. Marcus,et al.  First principles investigation on the stabilization mechanisms of the polar copper terminated Cu2O(1 1 1) surface , 2009 .

[2]  T. Rahman,et al.  Reactivity of the Cu2O(100) surface: Insights from first principles calculations , 2009 .

[3]  Dongfeng Xue,et al.  Polymorphology formation of Cu2O: A microscopic understanding of single crystal growth from both thermodynamic and kinetic models , 2009 .

[4]  Haitao Zhu,et al.  Fast Synthesis of Cu2O Hollow Microspheres and Their Application in DNA Biosensor of Hepatitis B Virus , 2009 .

[5]  Michael H. Huang,et al.  Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures , 2008 .

[6]  Q. Gong,et al.  One-Pot Synthesis of Uniform Cu2O and CuS Hollow Spheres and Their Optical Limiting Properties , 2008 .

[7]  Jinghui Zeng,et al.  Hydrothermal Synthesis of Uniform Cuprous Oxide Microcrystals with Controlled Morphology , 2008 .

[8]  Younan Xia,et al.  Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology , 2008 .

[9]  Jun Lin,et al.  Polyol-Mediated Synthesis of PbS Crystals: Shape Evolution and Growth Mechanism , 2008 .

[10]  Xitian Zhang,et al.  Synthesis of octahedral ZnGa2O4 particles and their field-emission properties , 2008 .

[11]  Michael H. Huang,et al.  Seed‐Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm , 2007 .

[12]  Xinhao Li,et al.  Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. , 2007, Chemistry.

[13]  Younan Xia,et al.  Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Palladium , 2007 .

[14]  W. Durfee,et al.  Low-coordinate transition-metal complexes of a carbon-substituted hemiporphyrazine. , 2007, Inorganic chemistry.

[15]  X. Ren,et al.  Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers , 2007 .

[16]  D. Xue,et al.  Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals , 2007 .

[17]  T. Grande,et al.  Self-Assembled Growth of PbTiO3 Nanoparticles into Microspheres and Bur-like Structures , 2007 .

[18]  Jun Lin,et al.  Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals. , 2007, Inorganic chemistry.

[19]  Zhu-de Xu,et al.  Morphology Control of Electrodeposited Cu2O Crystals in Aqueous Solutions Using Room Temperature Hydrophilic Ionic Liquids , 2006 .

[20]  Jun Lin,et al.  In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. , 2006, Inorganic chemistry.

[21]  Peidong Yang,et al.  Solution-grown zinc oxide nanowires. , 2006, Inorganic chemistry.

[22]  N. Turro,et al.  Complete CO oxidation over Cu2O nanoparticles supported on silica gel. , 2006, Nano letters.

[23]  Ruiping Deng,et al.  Precursor induced synthesis of hierarchical nanostructured ZnO , 2006, Nanotechnology.

[24]  C. Feng,et al.  Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. , 2006, Inorganic chemistry.

[25]  Wenzhong Wang,et al.  Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. , 2006, The journal of physical chemistry. B.

[26]  M. Lü,et al.  Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. , 2006, The journal of physical chemistry. B.

[27]  Qing Peng,et al.  Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors , 2006 .

[28]  Y. Li,et al.  Mass Synthesis of Large, Single‐Crystal Au Nanosheets Based on a Polyol Process , 2006 .

[29]  Dongli Xu,et al.  Morphology control of KDP crystallites , 2005 .

[30]  Younan Xia,et al.  Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. , 2005, Angewandte Chemie.

[31]  G. Shen,et al.  Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. , 2005, The journal of physical chemistry. B.

[32]  D. Xue,et al.  Morphology and structure studies of kdp and adp crystallites in the water and ethanol solutions , 2005 .

[33]  P. He,et al.  Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption. , 2005, Journal of colloid and interface science.

[34]  R. Sekerka Equilibrium and growth shapes of crystals: how do they differ and why should we care? , 2005 .

[35]  M. Siegfried,et al.  Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution , 2004 .

[36]  Haifeng Zhu,et al.  Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation , 2004 .

[37]  Shuhong Yu,et al.  Morphology control of stolzite microcrystals with high hierarchy in solution. , 2004, Angewandte Chemie.

[38]  C. Murphy,et al.  Controlling the size of Cu2O nanocubes from 200 to 25 nm , 2004 .

[39]  Y. Qian,et al.  Synthesis and growth mechanism of Bi2S3 nanoribbons. , 2004, Chemistry.

[40]  Yi Xie,et al.  Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires. , 2004, Chemistry.

[41]  Mingmei Wu,et al.  Hydrothermal synthesis of prismatic NaHoF(4) microtubes and NaSmF(4) nanotubes. , 2004, Inorganic chemistry.

[42]  W. K. Chan,et al.  Luminescent and structural properties of ZnO nanorods prepared under different conditions , 2003 .

[43]  H. Zeng,et al.  Size-Controlled Growth of Co3O4 Nanocubes , 2003 .

[44]  Stephen Mann,et al.  Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. , 2003, Angewandte Chemie.

[45]  L. Qi,et al.  Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. , 2003, Journal of the American Chemical Society.

[46]  Wenjing Li,et al.  Growth of hex-pod-like Cu2O whisker under hydrothermal conditions , 2003 .

[47]  Catherine J. Murphy,et al.  Solution-phase synthesis of Cu2O nanocubes , 2003 .

[48]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[49]  Zhifeng Ren,et al.  Hierarchical ZnO Nanostructures , 2002 .

[50]  D. Toomre,et al.  Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane , 2002, Nature.

[51]  Dongyuan Zhao,et al.  One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process , 2002 .

[52]  Zhong Lin Wang,et al.  Gallium Oxide Nanoribbons and Nanosheets , 2002 .

[53]  Jianping Xiao,et al.  Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures , 2001 .

[54]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[55]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[56]  Younan Xia,et al.  Large-Scale Synthesis of Monodisperse Nanorods of Se/Te Alloys Through a Homogeneous Nucleation and Solution Growth Process , 2001 .

[57]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[58]  S. N. Sahu,et al.  One‐Dimensional Quantum Confinement in Electrodeposited PbS Nanocrystalline Semiconductors , 2001 .

[59]  R. Penner,et al.  Molybdenum nanowires by electrodeposition. , 2000, Science.

[60]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[61]  Y. Qian,et al.  A NOVEL PEANUT-LIKE NANOSTRUCTURE OF II-VI SEMICONDUCTOR CDS AND ZNS , 2000 .

[62]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[63]  Y. Qian,et al.  In-Situ Source–Template–Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres , 2000 .

[64]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[65]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[66]  M. Carter,et al.  Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties , 1998 .

[67]  D. Snoke,et al.  Coherent Exciton Waves , 1996, Science.

[68]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[69]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[70]  D. Cox,et al.  H2O adsorption on Cu2O(100) , 1991 .

[71]  Cox,et al.  Photoemission and low-energy-electron-diffraction study of clean and oxygen-dosed Cu2O (111) and (100) surfaces. , 1991, Physical review. B, Condensed matter.

[72]  E. Matijević,et al.  Copper hydrous oxide sols of uniform particle shape and size , 1973 .

[73]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[74]  W. Ostwald,et al.  Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper , 1900 .

[75]  W. Ostwald Studien über die Bildung und Umwandlung fester Körper , 1897 .

[76]  Dongli Xu,et al.  Chemical bond analysis of the crystal growth of KDP and ADP , 2006 .

[77]  M. Yu,et al.  Network array of zinc oxide whiskers , 2004 .

[78]  Catherine J. Murphy,et al.  Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio , 2001 .

[79]  P. D. Jongh,et al.  Cu2O: a catalyst for the photochemical decomposition of water? , 1999 .

[80]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .