Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography

BackgroundEver since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases.ResultsHere, we demonstrate a general method for capturing enzyme catalysis “in action” by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis β-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s.ConclusionsMISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.

Anton Barty | Saša Bajt | Nirupa Nagaratnam | Petra Fromme | Matthias Frank | Marius Schmidt | Peter Schwander | Abbas Ourmazd | Jose M Martin-Garcia | Mengning Liang | Mitchell D. Miller | Stephan Stern | George N Phillips | Valerio Mariani | Thomas A White | Uwe Weierstall | Garrett Nelson | Dominik Oberthuer | Oleksandr Yefanov | George Calvey | Lois Pollack | Shatabdi Roy-Chowdhury | Henry N Chapman | Russell Fung | Nadia Zatsepin | M. Holl | H. Chapman | M. Frank | A. Barty | S. Bajt | G. Phillips | E. Bae | M. Hunter | M. Liang | T. White | J. Spence | U. Weierstall | S. Stern | P. Fromme | A. Ourmazd | K. Pande | P. Schwander | R. Fung | V. Mariani | M. Seaberg | L. Pollack | R. Fromme | T. Grant | D. Oberthuer | J. Knoška | M. Wiedorn | O. Yefanov | G. Nelson | George D. Calvey | N. Zatsepin | J. Koglin | Andrea M. Katz | J. Martín-García | G. Subramanian | Shatabdi Roy-Chowdhury | J. Coe | Marius Schmidt | Mitchell D Miller | Ganesh Subramanian | Mark S Hunter | Christopher Kupitz | Suraj Pandey | Euiyoung Bae | S. Pandey | I. Poudyal | Yun Zhao | Kanupriya Pande | Yun Zhao | Raimund Fromme | Mark Holl | Jesse Coe | Jason Koglin | James Zook | Thomas Grant | John Spence | Juraj Knoska | James D. Zook | Nirupa Nagaratnam | Ishwor Poudyal | Jose L Olmos | Andrea Katz | Max Wiedorn | Michael Heyman | Jacob Verburgt | Tyler Norwood | David Xu | Matthew H Seaberg | Lee Tremblay | Tyler Norwood | L. Tremblay | Christopher Kupitz | M. Heyman | David Xu | J. L. Olmos | Jacob Verburgt | J. Martin-Garcia | M. Hunter

[1]  M. Bassetti,et al.  New antibiotics for bad bugs: where are we? , 2013, Annals of Clinical Microbiology and Antimicrobials.

[2]  Takashi Kameshima,et al.  Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL , 2017, Nature.

[3]  David Fritz,et al.  Laser power meters as an X-ray power diagnostic for LCLS-II , 2018, Journal of synchrotron radiation.

[4]  J. Blanchard,et al.  Biochemical and structural characterization of Mycobacterium tuberculosis beta-lactamase with the carbapenems ertapenem and doripenem. , 2010, Biochemistry.

[5]  Georg Weidenspointner,et al.  Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. , 2011, Physical review. B, Condensed matter and materials physics.

[6]  J. Blanchard,et al.  Structure of the covalent adduct formed between Mycobacterium tuberculosis beta-lactamase and clavulanate. , 2008, Biochemistry.

[7]  D. Koshland,et al.  Millisecond Laue structures of an enzyme–product complex using photocaged substrate analogs , 1998, Nature Structural Biology.

[8]  Kenneth A. Frankel,et al.  The minimum crystal size needed for a complete diffraction data set , 2010, Acta crystallographica. Section D, Biological crystallography.

[9]  Anton Barty,et al.  Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[10]  L. Johnson,et al.  Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis At 6 Å Resolution , 1965, Nature.

[11]  L. Sluyterman,et al.  The activity of papain in the crystalline state. , 1969, Biochimica et biophysica acta.

[12]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[13]  William L. Hase,et al.  Chemical kinetics and dynamics , 1989 .

[14]  D. B. Boyd ELECTRONIC STRUCTURES OF CEPHALOSPORINS AND PENICILLINS. 15. INDUCTIVE EFFECT T OF THE 3-POSITION SIDE CHAIN IN CEPHALOSPORINS , 1984 .

[15]  Anton Barty,et al.  Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser , 2014, Nature.

[16]  Mitchell D. Miller,et al.  Structural enzymology using X-ray free electron lasers , 2016, Structural dynamics.

[17]  K. Hellingwerf,et al.  Influence of the crystalline state on photoinduced dynamics of photoactive yellow protein studied by ultraviolet-visible transient absorption spectroscopy. , 2006, Biophysical journal.

[18]  Sébastien Boutet,et al.  The Coherent X-ray Imaging instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[19]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[20]  Steven C. Almo,et al.  Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis , 1990, Nature.

[21]  D. B. Boyd,et al.  Electronic structures of cephalosporins and penicillins. 9. Departure of a leaving group in cephalosporins. , 1979, Journal of medicinal chemistry.

[22]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[23]  G. Nienhaus,et al.  Ligand migration and protein fluctuations in myoglobin mutant L29W. , 2005, Biochemistry.

[24]  Anton Barty,et al.  Recent developments in CrystFEL , 2016, Journal of applied crystallography.

[25]  Sébastien Boutet,et al.  The CSPAD megapixel x-ray camera at LCLS , 2012, Other Conferences.

[26]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[27]  J. Blanchard,et al.  Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. , 2007, Biochemistry.

[28]  U. Weierstall,et al.  Double-focusing mixing jet for XFEL study of chemical kinetics , 2014, Journal of synchrotron radiation.

[29]  Chris B. Schaffer,et al.  Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers , 2016, Structural dynamics.

[30]  Z. Ren,et al.  The role of dimer asymmetry and protomer dynamics in enzyme catalysis , 2017, Science.

[31]  D. Bourgeois,et al.  Kinetic protein crystallography: a tool to watch proteins in action , 2009 .

[32]  Marcin Sikorski,et al.  Structure of photosystem II and substrate binding at room temperature , 2016, Nature.

[33]  Axel T. Brunger,et al.  Model bias in macromolecular crystal structures , 1992 .

[34]  H. N. Chapman,et al.  Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography , 2016, Nature.

[35]  J. Helliwell,et al.  Time-resolved structures of hydroxymethylbilane synthase (Lys59Gln mutant) as it is loaded with substrate in the crystal determined by Laue diffraction , 1998 .

[36]  T. Poulos,et al.  Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer , 2016, Proceedings of the National Academy of Sciences.

[37]  Randy J. Read,et al.  Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias , 2008, Acta crystallographica. Section D, Biological crystallography.

[38]  Feng Wang,et al.  Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. , 2006, Antimicrobial agents and chemotherapy.

[39]  Marius Schmidt,et al.  Application of singular value decomposition to the analysis of time-resolved macromolecular x-ray data. , 2003, Biophysical journal.

[40]  Karl Edman,et al.  Analyzing protein functions in four dimensions , 2000, Nature Structural Biology.

[41]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  I. Schlichting,et al.  Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP. , 2016, The journal of physical chemistry letters.

[43]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[44]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[45]  Allan S. Johnson,et al.  X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature , 2017, International journal of molecular sciences.

[46]  Marius Schmidt,et al.  Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources. , 2017, Methods in molecular biology.

[47]  Takashi Kameshima,et al.  A three-dimensional movie of structural changes in bacteriorhodopsin , 2016, Science.

[48]  Marius Schmidt,et al.  Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography , 2013 .

[49]  K. Moffat Time-resolved macromolecular crystallography , 1996 .

[50]  Maurice Goeldner,et al.  Dynamic studies in biology : phototriggers, photoswitches and caged biomolecules , 2005 .

[51]  Feng Wang,et al.  Crystal Structure and Activity Studies of the Mycobacterium tuberculosis β-Lactamase Reveal Its Critical Role in Resistance to β-Lactam Antibiotics , 2006, Antimicrobial Agents and Chemotherapy.

[52]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[53]  K. Asadpour‐Zeynali,et al.  Electrocatalytic oxidation and determination of antibiotic in pharmaceutical samples on a nanostructure. , 2011, Analytical methods : advancing methods and applications.

[54]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[55]  P. Kiener,et al.  Reversible inhibitors of penicillinases. , 1978, The Biochemical journal.

[56]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[57]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[58]  J. Blanchard,et al.  Structures of the Michaelis complex (1.2 Å) and the covalent acyl intermediate (2.0 Å) of cefamandole bound in the active sites of the Mycobacterium tuberculosis β-lactamase K73A and E166A mutants. , 2010, Biochemistry.

[59]  H. Chapman,et al.  Mix-and-diffuse serial synchrotron crystallography , 2017, IUCrJ.

[60]  Sébastien Boutet,et al.  Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature , 2013, Science.

[61]  Anton Barty,et al.  Double-flow focused liquid injector for efficient serial femtosecond crystallography , 2017, Scientific Reports.

[62]  L. Johnson,et al.  Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. , 1965, Nature.

[63]  Silvano Geremia,et al.  Simulation of diffusion time of small molecules in protein crystals. , 2006, Structure.

[64]  V. Marx Structural biology: doors open at the European XFEL , 2017, Nature Methods.

[65]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[66]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[67]  K. Achterhold,et al.  A Physical Picture of Protein Dynamics and Conformational Changes , 2007, Journal of biological physics.

[68]  D. Saldin,et al.  Extraction of Fast Changes in the Structure of a Disordered Ensemble of Photoexcited Biomolecules , 2013 .

[69]  P. Fromme,et al.  Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[70]  J. Mainardi,et al.  Inactivation of Mycobacterium tuberculosis l,d-Transpeptidase LdtMt1 by Carbapenems and Cephalosporins , 2012, Antimicrobial Agents and Chemotherapy.

[71]  Anton Barty,et al.  Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.

[72]  R. Read,et al.  Improved estimates of coordinate error for molecular replacement , 2013, Acta crystallographica. Section D, Biological crystallography.

[73]  K. Mathee,et al.  Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology , 2010, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.