Free and forced vibration analysis using the smoothed finite element method ( SFEM )
暂无分享,去创建一个
K. Daia | G. Liua | K. Y. Daia | G. R. Liua
[1] Jiun-Shyan Chen,et al. A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .
[2] K. Y. Dai,et al. A Smoothed Finite Element Method for Mechanics Problems , 2007 .
[3] Ted Belytschko,et al. Efficient linear and nonlinear heat conduction with a quadrilateral element , 1983 .
[4] T. Belytschko,et al. Efficient implementation of quadrilaterals with high coarse-mesh accuracy , 1986 .
[5] K. Y. Dai,et al. Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .
[6] K. Y. Dai,et al. A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures , 2002 .
[7] C. Brebbia,et al. Boundary Element Techniques , 1984 .
[8] K. Bathe. Finite Element Procedures , 1995 .
[9] K. Y. Dai,et al. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .
[10] Toshio Nagashima,et al. NODE-BY-NODE MESHLESS APPROACH AND ITS APPLICATIONS TO STRUCTURAL ANALYSES , 1999 .
[11] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[12] D. V. Griffiths,et al. Programming the finite element method , 1982 .
[13] K. Y. Dai,et al. A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS , 2005 .
[14] Michał Kleiber,et al. Nonlinear Mechanics of Structures , 1991 .
[15] K. Y. Dai,et al. Contact Analysis for Solids Based on Linearly Conforming Radial Point Interpolation Method , 2007 .
[16] J. M. Kennedy,et al. Hourglass control in linear and nonlinear problems , 1983 .