Mesopic visual efficiency II: reaction time experiments

Reaction times are recorded to chromatic, mesopic stimuli to investigate mesopic reaction time spectral sensitivity. Measurements are made using three laboratory setups and a driving simulator. The chromatic stimuli have spectral distributions that range from quasi-monochromatic to broadband. Reaction time spectral sensitivity for small (0.29°) foveal stimuli changes little with luminance and is described adequately by V (λ). Reaction time spectral sensitivity for peripheral stimuli exhibits a Purkinje shift, and approaches V ' (λ) at 0.01 cd m-2. In the periphery, the results for medium-sized stimuli (2°) reflect the activity of colour-opponent neurons in addition to rod and cone-based achromatic activity, resulting in three-peaked spectral sensitivity functions.

[1]  M. Ikeda,et al.  Mesopic luminous-efficiency functions. , 1981, Journal of the Optical Society of America.

[2]  S Plainis,et al.  Reaction times as an index of visual conspicuity when driving at night , 2002, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[3]  P. E. Hallett,et al.  Rod-cone dependence of saccadic eye-movement latency in a foveating task , 1988, Vision Research.

[4]  H. Walkey Visual performance in the mesopic range , 2003 .

[5]  I. J Murray,et al.  Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance , 2000, Neuropsychologia.

[6]  M. H. Pirenne,et al.  The sensations : their functions, processes and mechanisms , 1952 .

[7]  Mark S. Rea,et al.  Visual reaction times: Method for measuring small differences , 1998 .

[8]  R. Mansfield,et al.  Latency functions in human vision. , 1973, Vision research.

[9]  J. J. Vos Colorimetric and photometric properties of a 2° fundamental observer , 1978 .

[10]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[11]  John L Barbur,et al.  Effective contrast of colored stimuli in the mesopic range: a metric for perceived contrast based on achromatic luminance contrast. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  M. Rea,et al.  A system of mesopic photometry , 1998 .

[13]  Joel Pokorny,et al.  Wavelength effects on simple reaction time , 1977 .

[14]  J. Alferdinck,et al.  Target detection and driving behaviour measurements in a driving simulator at mesopic light levels , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[15]  J L Barbur,et al.  Visual processing levels revealed by response latencies to changes in different visual attributes , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  D. Macleod,et al.  Spectral sensitivities of the human cones. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  John D. Bullough,et al.  Evaluating light source efficacy under mesopic conditions using reaction times , 1997 .

[18]  A. Nagy,et al.  Red-green color discrimination as a function of stimulus field size in peripheral vision. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[19]  K. Sagawa,et al.  Spectral luminous efficiency functions in the mesopic range. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[20]  D. Pins,et al.  Reaction times reveal the contribution of the different receptor components in luminance perception , 1997 .

[21]  Peter Zsolt Bodrogi,et al.  Mesopic visual efficiency I: detection threshold measurements , 2007 .

[22]  A. Lit,et al.  Simple time reaction as a function of luminance for various wavelengths , 1971 .

[23]  Ian J Murray,et al.  Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency. , 2003, Investigative ophthalmology & visual science.

[24]  Robert Clear,et al.  Additivity Constraints and Visual Task Considerations in Mesopic Photometry , 2001 .

[25]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[26]  Peter Zsolt Bodrogi,et al.  Mesopic visual efficiency IV: a model with relevance to nighttime driving and other applications , 2007 .

[27]  J. D. Pollack,et al.  Reaction time to different wavelengths at various luminances , 1968 .

[28]  D. Macleod,et al.  Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[30]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[31]  J. L. Barbur,et al.  Characterising mesopic spectral sensitivity from reaction times , 2006, Vision Research.

[32]  Peter Zsolt Bodrogi,et al.  Mesopic models—from brightness matching to visual performance in night-time driving: a review , 2005 .

[33]  R. Harwerth,et al.  Red-Green Cone Interactions in the Increment-Threshold Spectral Sensitivity of Primates , 1971, Science.

[34]  Marjukka Eloholma,et al.  Mesopic visual efficiency III: Discrimination threshold measurements , 2007 .

[35]  J. Koenderink,et al.  Sensitivity to spatiotemporal colour contrast in the peripheral visual field , 1983, Vision Research.

[36]  J. Kinney,et al.  Comparison of scotopic, mesopic, and photopic spectral sensitivity curves. , 1958, Journal of the Optical Society of America.

[37]  R. M. Boynton,et al.  Comparison of four methods of heterochromatic photometry. , 1972, Journal of the Optical Society of America.

[38]  M. Eloholma,et al.  Visual performance in night‐time driving conditions , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[39]  G Wald,et al.  HUMAN VISION AND THE SPECTRUM. , 1945, Science.

[40]  P. King-Smith,et al.  Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. , 1976, Journal of the Optical Society of America.