Phase states of nanocrystalline ferroelectric ceramics and their dielectric properties

Using a nonlinear thermodynamic theory, we describe equilibrium polarization states and the macroscopic dielectric response of nanocrystalline ferroelectric ceramics with single-domain grains. The elastic clamping of individual crystallites by the surrounding material is explicitly taken into account via the introduction of a specific thermodynamic potential. Aggregate material properties are calculated with the aid of an iterative procedure based on the method of effective medium. The numerical calculations, performed for unpolarized BaTiO3 and Pb(Zr1−xTix)O3 ceramics, demonstrate that the equilibrium phase states of nanocrystalline ceramics may differ drastically from those of single crystals and coarse-grained materials. Remarkably, the theory predicts the coexistence of rhombohedral and tetragonal crystallites in nanocrystalline Pb(Zr1−xTix)O3 ceramics in a wide range of compositions and temperatures. For BaTiO3 ceramics, a mixture of rhombohedral and orthorhombic crystallites is found to be the energ...

[1]  C. Nan,et al.  Piezoelectric Moduli of Piezoelectric Ceramics , 2005 .

[2]  Rainer Waser,et al.  Phase diagrams and physical properties of single-domain epitaxialPb(Zr1−xTix)O3thin films , 2003 .

[3]  U. Böttger,et al.  Grain-Boundary Effect on the Curie-Weiss Law of Ferroelectric Ceramics and Polycrystalline Thin Films: Calculation by the Method of Effective Medium , 2002 .

[4]  Chang Q. Sun,et al.  Grain-size effect on ferroelectric P b ( Z r 1 − x Ti x ) O 3 solid solutions induced by surface bond contraction , 2001 .

[5]  H. M. Jang,et al.  Epitaxial Pb(Zr, Ti)O 3 thin films with coexisting tetragonal and rhombohedral phases , 2001 .

[6]  E. Salje,et al.  Thermodynamics of pseudoproper and improper ferroelastic inclusions and polycrystals: Effect of elastic clamping on phase transitions , 2000 .

[7]  D. Shen,et al.  Carrier tunneling in a novel asymmetric quantum well structure , 1999 .

[8]  A. Tagantsev,et al.  Equilibrium states and phase transitions in epitaxial ferroelectric thin films , 1999 .

[9]  R. Waser,et al.  Aggregate linear properties of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective piezoelectric medium , 1998 .

[10]  Robert E. Newnham,et al.  The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3) , 1998 .

[11]  Zhengkui Xu,et al.  The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics , 1998 .

[12]  L. Eric Cross,et al.  Dimension and Size Effects in Ferroelectrics , 1997 .

[13]  B. Jiang,et al.  Hrtem analysis of nanocrystalline BaTiO3 and PbTiO3: Size effects on ferroelectric phase transition temperature , 1997 .

[14]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .

[15]  Leslie E. Cross,et al.  SIZE EFFECTS IN NANOSTRUCTURED FERROELECTRICS , 1996 .

[16]  H. Hsiang,et al.  Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders , 1996 .

[17]  M. Dunn Effects of grain shape anisotropy, porosity, and microcracks on the elastic and dielectric constants of polycrystalline piezoelectric ceramics , 1995 .

[18]  David A. Payne,et al.  Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol‐gel derived thin‐layer capacitors , 1993 .

[19]  Y. Benveniste,et al.  The determination of the elastic and electric fields in a piezoelectric inhomogeneity , 1992 .

[20]  M. Avellaneda,et al.  Effective dielectric and elastic constants of piezoelectric polycrystals , 1992 .

[21]  Wang Biao,et al.  Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material , 1992 .

[22]  G. Dormans,et al.  Effects of crystallite size in PbTiO3 thin films , 1991 .

[23]  G. Arlt,et al.  Internal stresses and elastic energy in ferroelectric and ferroelastic ceramics: Calculations by the dislocation method , 1991 .

[24]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[25]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[26]  Kenji Uchino,et al.  Dependence of the Crystal Structure on Particle Size in Barium Titanate , 1989 .

[27]  Okada,et al.  Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. , 1988, Physical review. B, Condensed matter.

[28]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[29]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[30]  J. A. Pask,et al.  Microstructure and properties of ceramic materials , 1984 .

[31]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .

[32]  Kyoichi Kinoshita,et al.  Grain‐size effects on dielectric properties in barium titanate ceramics , 1976 .

[33]  W. Buessem,et al.  Phenomenological Theory of High Permittivity in Fine‐Grained Barium Titanate , 1966 .

[34]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  Masakazu Marutake,et al.  A Calculation of Physical Constants of Ceramic Barium Titanate , 1956 .

[36]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .