Lasserre Hierarchy for Large Scale Polynomial Optimization in Real and Complex Variables

We propose general notions to deal with large scale polynomial optimization problems and demonstrate their efficiency on a key industrial problem of the twenty first century, namely the optimal power flow problem. These notions enable us to find global minimizers on instances with up to 4,500 variables and 14,500 constraints. First, we generalize the Lasserre hierarchy from real to complex to numbers in order to enhance its tractability when dealing with complex polynomial optimization. Complex numbers are typically used to represent oscillatory phenomena, which are omnipresent in physical systems. Using the notion of hyponormality in operator theory, we provide a finite convergence criterion which generalizes the Curto-Fialkow conditions of the real Lasserre hierarchy. Second, we introduce the multi-ordered Lasserre hierarchy in order to exploit sparsity in polynomial optimization problems (in real or complex variables) while preserving global convergence. It is based on two ideas: 1) to use a different relaxation order for each constraint, and 2) to iteratively seek a closest measure to the truncated moment data until a measure matches the truncated data. Third and last, we exhibit a block diagonal structure of the Lasserre hierarchy in the presence of commonly encountered symmetries.

[1]  Claus Scheiderer,et al.  Sums of squares and moment problems in equivariant situations , 2008, 0808.0034.

[2]  Ameer Athavale,et al.  ON JOINT HYPONORMALITY OF OPERATORS , 1988 .

[3]  Ian A. Hiskens,et al.  Moment-based relaxation of the optimal power flow problem , 2013, 2014 Power Systems Computation Conference.

[4]  F. Vasilescu,et al.  Subnormality and Moment Problems , 2009 .

[5]  Didier Henrion,et al.  Strong duality in Lasserre’s hierarchy for polynomial optimization , 2014, Optim. Lett..

[6]  Raúl E. Curto Joint hyponormality:A bridge between hyponormality and subnormality , 1990 .

[7]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[8]  Claus Scheiderer,et al.  Quillen property for real algebraic varieties , 2013, 1304.0947.

[9]  David P. Kimsey,et al.  The subnormal completion problem in several variables , 2016 .

[10]  Mihai Putinar,et al.  Polynomially Hyponormal Operators , 2010 .

[11]  A. Atzmon A moment problem for positive measures on the unit disc. , 1975 .

[12]  Amir Ali Ahmadi,et al.  DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization , 2014, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[13]  D. Quillen,et al.  On the representation of hermitian forms as sums of squares , 1968 .

[14]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[15]  Mihai Putinar,et al.  On hermitian polynomial optimization , 2006 .

[16]  David Grimm,et al.  A note on the representation of positive polynomials with structured sparsity , 2006, math/0611498.

[17]  John P. D'Angelo,et al.  Hermitian analogues of Hilbert's 17-th problem , 2010, 1012.2479.

[18]  Daniel K. Molzahn,et al.  Examining the limits of the application of semidefinite programming to power flow problems , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  S. Low,et al.  Zero Duality Gap in Optimal Power Flow Problem , 2012, IEEE Transactions on Power Systems.

[20]  L. Wehenkel,et al.  Contingency Ranking With Respect to Overloads in Very Large Power Systems Taking Into Account Uncertainty, Preventive, and Corrective Actions , 2013, IEEE Transactions on Power Systems.

[21]  Anthony Sudbery,et al.  The geometric measure of multipartite entanglement and the singular values of a hypermatrix , 2010 .

[22]  Shuzhong Zhang,et al.  Approximation methods for complex polynomial optimization , 2014, Comput. Optim. Appl..

[23]  Mihai Putinar,et al.  Lectures on hyponormal operators , 1989 .

[24]  Kim-Chuan Toh,et al.  On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .

[25]  Mihai Putinar,et al.  Nearly Subnormal Operators and Moment Problems , 1993 .

[26]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[27]  Jean-Pierre Gabardo Truncated Trigonometric Moment Problems and Determinate Measures , 1999 .

[28]  Salma Kuhlmann,et al.  Positive polynomials on fibre products , 2007 .

[29]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[30]  A. Fialkow,et al.  THE TRUNCATED COMPLEX K-MOMENT PROBLEM , 2000 .

[31]  Steen Pedersen,et al.  Moment problems and subnormality , 1990 .

[32]  Zhi-Quan Luo,et al.  Blind constant modulus equalization via convex optimization , 2003, IEEE Trans. Signal Process..

[33]  C. Josz Application of polynomial optimization to electricity transmission networks , 2016, 1608.03871.

[34]  Ian A. Hiskens,et al.  Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem , 2014, IEEE Transactions on Power Systems.

[35]  Mihai Putinar,et al.  Hermitian algebra on the ellipse , 2012 .

[36]  M. Putinar,et al.  Sur la complexification du problème des moments , 1992 .

[37]  I. S. Iokhvidov Hankel and Toeplitz Matrices and Forms: Algebraic Theory , 1982 .

[38]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[39]  Amit Singer,et al.  Tightness of the maximum likelihood semidefinite relaxation for angular synchronization , 2014, Math. Program..

[40]  Yang Zheng,et al.  Fast ADMM for Sum-of-Squares Programs Using Partial Orthogonality , 2017, IEEE Transactions on Automatic Control.

[41]  O. Toker,et al.  On the complexity of purely complex μ computation and related problems in multidimensional systems , 1998, IEEE Trans. Autom. Control..

[42]  G. Cassier,et al.  Problème des moments sur un compact de Rn et décomposition de polynômes a plusieurs variables , 1984 .

[43]  Jean B. Lasserre,et al.  A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..

[44]  C'edric Josz Counterexample to global convergence of DSOS and SDSOS hierarchies , 2017 .

[45]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[46]  R. Cooke Real and Complex Analysis , 2011 .

[47]  P. P. Vaidyanathan,et al.  MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter , 2009, IEEE Transactions on Signal Processing.

[48]  Bernard Mourrain,et al.  A generalized flat extension theorem for moment matrices , 2009 .

[49]  Monique Laurent,et al.  Revisiting two theorems of Curto and Fialkow on moment matrices , 2005 .

[50]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[51]  John P. D'Angelo,et al.  Inequalities from Complex Analysis , 2002 .

[52]  Visa Koivunen,et al.  Beampattern optimization by minimization of quartic polynomial , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[53]  Paul R. Halmos,et al.  Normal Dilations and Extensions of Operators , 1983 .

[54]  M. G. Kreĭn,et al.  Some questions in the theory of moments , 1962 .

[55]  Shuzhong Zhang,et al.  Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations , 2015, SIAM J. Matrix Anal. Appl..

[56]  B. Mourrain,et al.  Structured low rank decomposition of multivariate Hankel matrices , 2017, 1701.05805.

[57]  Martin S. Andersen,et al.  Reduced-Complexity Semidefinite Relaxations of Optimal Power Flow Problems , 2013, IEEE Transactions on Power Systems.

[58]  Jean Maeght,et al.  AC Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE , 2016, 1603.01533.

[59]  John P. D'Angelo,et al.  Polynomial Optimization on Odd-Dimensional Spheres , 2009 .

[60]  Lieven De Lathauwer,et al.  Unconstrained Optimization of Real Functions in Complex Variables , 2012, SIAM J. Optim..

[61]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[62]  Thorsten Theobald,et al.  Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization , 2011, Math. Oper. Res..

[63]  A. Sri Ranga,et al.  Szegő polynomials and the truncated trigonometric moment problem , 2006 .

[64]  Vern I. Paulsen,et al.  A NOTE ON JOINT HYPONORMALITY , 1989 .

[65]  Ian A. Hiskens,et al.  Mixed SDP/SOCP moment relaxations of the optimal power flow problem , 2015, 2015 IEEE Eindhoven PowerTech.

[66]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[67]  Mar'ia L'opez Quijorna Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction , 2021, J. Glob. Optim..

[68]  Jean Charles Gilbert,et al.  Application of the Moment-SOS Approach to Global Optimization of the OPF Problem , 2013, IEEE Transactions on Power Systems.

[69]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[70]  Sergey M. Zagorodnyuk,et al.  On the truncated operator trigonometric moment problem , 2015, 1501.02396.

[71]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[72]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[73]  Mihai Putinar,et al.  Multivariate Determinateness , 2008, 0810.0840.

[74]  F. H. Szafraniec,et al.  The complex moment problem and subnormality : a polar decomposition approach , 1998 .

[75]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[76]  Paul A. Trodden,et al.  Local Solutions of the Optimal Power Flow Problem , 2013, IEEE Transactions on Power Systems.

[77]  John P. D'Angelo,et al.  A stabilization theorem for Hermitian forms and applications to holomorphic mappings , 1995 .

[78]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .

[79]  J. Lasserre,et al.  Optimisation globale et théorie des moments , 2000 .

[80]  N. Akhiezer,et al.  The Classical Moment Problem and Some Related Questions in Analysis , 2020 .

[81]  Xiaolong Kuang,et al.  Alternative LP and SOCP Hierarchies for ACOPF Problems , 2017, IEEE Transactions on Power Systems.

[82]  Joshua A. Taylor Convex Optimization of Power Systems , 2015 .

[83]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[84]  Pascal Van Hentenryck,et al.  The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow , 2015, ArXiv.

[85]  Dp Kimsey,et al.  The truncated matrix-valued K -moment problem on R d , C d and T d , 2013 .

[86]  R. Jabr Radial distribution load flow using conic programming , 2006, IEEE Transactions on Power Systems.

[87]  John P. D'Angelo,et al.  HERMITIAN COMPLEXITY OF REAL POLYNOMIAL IDEALS , 2012 .

[88]  Raul E. Curto,et al.  Truncated K-moment problems in several variables , 2005 .

[89]  Jean B. Lasserre,et al.  Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity , 2016, Mathematical Programming Computation.

[90]  Jakub Marecek,et al.  Optimal Power Flow as a Polynomial Optimization Problem , 2014, IEEE Transactions on Power Systems.