Variational Multiscale Models for Charge Transport

This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.

[1]  Graca Raposo,et al.  Correction for Wagoner and Baker, Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms , 2007, Proceedings of the National Academy of Sciences.

[2]  Shin-Ho Chung,et al.  Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels. , 2003, Biophysical journal.

[3]  F. M. Bufler,et al.  Efficient Monte Carlo device modeling , 2000 .

[4]  Guo-Wei Wei,et al.  On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method , 2006, J. Comput. Phys..

[5]  Guo-Wei Wei,et al.  Poisson-Boltzmann-Nernst-Planck model. , 2011, The Journal of chemical physics.

[6]  R. Eisenberg,et al.  Hydrodynamic model of temperature change in open ionic channels. , 1995, Biophysical journal.

[7]  G. W. Wei,et al.  Generalized Perona-Malik equation for image restoration , 1999, IEEE Signal Processing Letters.

[8]  Serdar Kuyucak,et al.  Models of permeation in ion channels , 2001 .

[9]  J. G. Muga,et al.  Moderately dense gas quantum kinetic theory: Transport coefficient expressions , 1996 .

[10]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[11]  J. Trylska,et al.  Continuum molecular electrostatics, salt effects, and counterion binding—A review of the Poisson–Boltzmann theory and its modifications , 2008, Biopolymers.

[12]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[13]  Guo-Wei Wei,et al.  Quantum dynamics in continuum for proton transport--generalized correlation. , 2012, The Journal of chemical physics.

[14]  Eric Polizzi,et al.  Subband decomposition approach for the simulation of quantum electron transport in nanostructures , 2005 .

[15]  Michael L. Connolly,et al.  Depth-buffer algorithms for molecular modelling , 1985 .

[16]  Abraham Nitzan,et al.  Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels , 2004 .

[17]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Nathan A. Baker,et al.  Differential geometry based solvation model I: Eulerian formulation , 2010, J. Comput. Phys..

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[21]  H J Morowitz,et al.  Molecular mechanisms for proton transport in membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Michael Ramsey,et al.  Microfluidic Assays of Acetylcholinesterase Inhibitors , 1999 .

[23]  Wei Cai,et al.  Effect of boundary treatments on quantum transport current in the Green's function and Wigner distribution methods for a nano-scale DG-MOSFET , 2010, J. Comput. Phys..

[24]  Y. J. Park,et al.  A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions , 2006 .

[25]  Ramesh Ramakrishnan,et al.  High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays , 2009, BMC Genomics.

[26]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[27]  Weihua Geng,et al.  Treatment of geometric singularities in implicit solvent models. , 2007, The Journal of chemical physics.

[28]  Chung F. Wong,et al.  Efficient quantum mechanical calculation of solvation free energies based on density functional theory, numerical atomic orbitals and Poisson–Boltzmann equation , 2007 .

[29]  Keith Promislow,et al.  PEM Fuel Cells: A Mathematical Overview , 2009, SIAM J. Appl. Math..

[30]  Benzhuo Lu,et al.  Solutions to a reduced Poisson-Nernst-Planck system and determination of reaction rates. , 2010, Physica A.

[31]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[32]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[33]  Phil Attard,et al.  Electrolytes and the Electric Double Layer , 2007 .

[34]  Benoît Roux,et al.  An Integral Equation To Describe the Solvation of Polar Molecules in Liquid Water , 1997 .

[35]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Eli Ruckenstein,et al.  On the chemical free energy of the electrical double layer , 2003 .

[37]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[38]  Donald A. McQuarrie,et al.  Electrokinetic flow in a narrow cylindrical capillary , 1980 .

[39]  A. Goryachev,et al.  Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches. , 2011, The Journal of chemical physics.

[40]  G. Wei,et al.  Nonlinear Poisson equation for heterogeneous media. , 2012, Biophysical journal.

[41]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[42]  J. Newman,et al.  Modeling of Nickel/Metal Hydride Batteries , 1997 .

[43]  Habib N. Najm,et al.  Components for atomistic-to-continuum multiscale modeling of flow in micro- and nanofluidic systems , 2008, Sci. Program..

[44]  T. DeCoursey Voltage-gated proton channels and other proton transfer pathways. , 2003, Physiological reviews.

[45]  Guo-Wei Wei,et al.  Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation. , 2013, Communications in computational physics.

[46]  B. Roux,et al.  Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. , 1996, Biophysical journal.

[47]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[48]  Adam Z. Weber,et al.  Modeling Transport in Polymer‐Electrolyte Fuel Cells , 2004 .

[49]  J. Adin Mann,et al.  A Critical Overview of Computational Fluid Dynamics Multiphase Models for Proton Exchange Membrane Fuel Cells , 2009, SIAM J. Appl. Math..

[50]  D. Frydel Polarizable Poisson-Boltzmann equation: the study of polarizability effects on the structure of a double layer. , 2011, The Journal of chemical physics.

[51]  George C Schatz,et al.  Incorporation of inhomogeneous ion diffusion coefficients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel. , 2007, The journal of physical chemistry. A.

[52]  L. Waldmann Notizen: Die Boltzmann-Gleichung für Gase mit rotierenden Molekülen , 1957 .

[53]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[54]  YunKyong Hyon,et al.  A mathematical model for the hard sphere repulsion in ionic solutions , 2011 .

[55]  Chandrajit L. Bajaj,et al.  Surface Smoothing and Quality Improvement of Quadrilateral/Hexahedral Meshes with Geometric Flow , 2005, IMR.

[56]  Valentin Gogonea,et al.  Implementation of the solvent effect in molecular mechanics. 1. Model development and analytical algorithm for the solvent-accessible surface area , 1994 .

[57]  Scott A. Barnett,et al.  Effect of composition of (La0.8Sr0.2MnO3–Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance , 2010 .

[58]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[59]  R. Fair,et al.  A scaling model for electrowetting-on-dielectric microfluidic actuators , 2009 .

[60]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[61]  Roland Roth,et al.  Fundamental measure theory for hard-sphere mixtures: a review , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  Incorporation of excluded-volume correlations into Poisson-Boltzmann theory. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  G. Lamm,et al.  The Poisson–Boltzmann Equation , 2003 .

[64]  Y. Levin,et al.  Electrostatic correlations: from plasma to biology , 2002 .

[65]  R. W. Kelsall,et al.  The Monte Carlo method for semiconductor device simulation , 1995 .

[66]  Bernhard Maschke,et al.  A Dynamic Mechanistic Model of an Electrochemical Interface , 2006 .

[67]  R. Ismagilov,et al.  Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. , 2010, Annual review of biophysics.

[68]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[69]  Carlo de Falco,et al.  Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation , 2009, J. Comput. Phys..

[70]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[71]  Sining Yu,et al.  Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities , 2007, J. Comput. Phys..

[72]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[73]  D. Case,et al.  Generalized Born Models of Macromolecular Solvation Effects , 2001 .

[74]  J. E. Guyer,et al.  Phase field modeling of electrochemistry , 2004 .

[75]  Simone Melchionna,et al.  Electrostatic potential inside ionic solutions confined by dielectrics: a variational approach , 2001 .

[76]  Ruey-Jen Yang,et al.  A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model. , 2009, Journal of colloid and interface science.

[78]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[79]  Shan Zhao,et al.  Pseudo‐time‐coupled nonlinear models for biomolecular surface representation and solvation analysis , 2011 .

[80]  A. T. Galick,et al.  ITERATION SCHEME FOR THE SOLUTION OF THE TWO-DIMENSIONAL SCHRODINGER-POISSON EQUATIONS IN QUANTUM STRUCTURES , 1997 .

[81]  J A McCammon,et al.  Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. , 2005, Physical review letters.

[82]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[83]  Weihua Geng,et al.  Treatment of charge singularities in implicit solvent models. , 2007, The Journal of chemical physics.

[84]  Benoît Roux,et al.  Solvation of complex molecules in a polar liquid: An integral equation theory , 1996 .

[85]  Michael Holst,et al.  The Poisson-Boltzmann equation: Analysis and multilevel numerical solution , 1994 .

[86]  Tom Chou,et al.  Enhancement of charged macromolecule capture by nanopores in a salt gradient. , 2009, The Journal of chemical physics.

[87]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[88]  Yingda Cheng,et al.  A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices , 2009, 0902.3514.

[89]  Christian Holm,et al.  An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. , 2010, The Journal of chemical physics.

[90]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Robert S. Eisenberg,et al.  Tuning transport properties of nanofluidic devices with local charge inversion. , 2009, Journal of the American Chemical Society.

[92]  P Belgrader,et al.  A microfluidic cartridge to prepare spores for PCR analysis. , 2000, Biosensors & bioelectronics.

[93]  G. Wei Differential Geometry Based Multiscale Models , 2010, Bulletin of mathematical biology.

[94]  Z. Siwy,et al.  Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Yi Wang,et al.  Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow , 2009 .

[96]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[97]  Massimo V. Fischetti,et al.  Master-equation approach to the study of electronic transport in small semiconductor devices , 1999 .

[98]  Ye Mei,et al.  A new quantum method for electrostatic solvation energy of protein. , 2006, The Journal of chemical physics.

[99]  Adel Golovin,et al.  Cation-pi interactions in protein-protein interfaces. , 2005, Proteins.

[100]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[101]  David A. Case,et al.  Incorporating solvation effects into density functional electronic structure calculations , 1994 .

[102]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[103]  W. Im,et al.  Theoretical and computational models of biological ion channels , 2004, Quarterly Reviews of Biophysics.

[104]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[105]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[106]  M. Kurnikova,et al.  Soft wall ion channel in continuum representation with application to modeling ion currents in α-hemolysin. , 2010, The journal of physical chemistry. B.

[107]  G. Patey,et al.  The solution of the hypernetted‐chain approximation for fluids of nonspherical particles. A general method with application to dipolar hard spheres , 1985 .

[108]  Kim A. Sharp,et al.  Electrostatic interactions in macromolecules , 1994 .

[109]  Federico Fogolari,et al.  On the variational approach to Poisson–Boltzmann free energies , 1997 .

[110]  Zuzanna Siwy,et al.  Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. , 2008, ACS nano.

[111]  D. Levitt,et al.  Modeling of Ion Channels , 1999, The Journal of general physiology.

[112]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.

[113]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[114]  I. Mayergoyz,et al.  Analysis of fluctuations in semiconductor devices through self-consistent Poisson-Schrödinger computations , 2004 .

[115]  Artem B Mamonov,et al.  Diffusion constant of K+ inside Gramicidin A: a comparative study of four computational methods. , 2006, Biophysical chemistry.

[116]  Duan Chen,et al.  Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices , 2010, J. Comput. Phys..

[117]  Benzhuo Lu,et al.  A computational study of ion conductance in the KcsA K(+) channel using a Nernst-Planck model with explicit resident ions. , 2009, The Journal of chemical physics.

[118]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[119]  D. Levitt Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. , 1986, Annual review of biophysics and biophysical chemistry.

[120]  Joe T. Lin,et al.  Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays , 1999 .

[121]  R. S. Spolar,et al.  Coupling of local folding to site-specific binding of proteins to DNA. , 1994, Science.

[122]  Dirk Gillespie,et al.  Density functional theory of the electrical double layer: the RFD functional , 2005 .

[123]  G. Wei,et al.  Molecular multiresolution surfaces , 2005, math-ph/0511001.

[124]  P. Privalov,et al.  DNA binding and bending by HMG boxes: energetic determinants of specificity. , 2004, Journal of molecular biology.

[125]  Guo-Wei Wei,et al.  Multiscale molecular dynamics using the matched interface and boundary method , 2011, J. Comput. Phys..

[126]  I-Liang Chern,et al.  Accurate Evaluation of Electrostatics for Macromolecules in Solution , 2003 .

[127]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[128]  Shan Zhao,et al.  Geometric and potential driving formation and evolution of biomolecular surfaces , 2009, Journal of mathematical biology.

[129]  Paul Yager,et al.  Silicon-microfabricated diffusion-based optical chemical sensor , 1997 .

[130]  S. Barraud Quantization effects on the phonon-limited electron mobility in ultrathin SOI, sSOI and GeOI devices , 2007 .

[131]  Frank Eisenhaber,et al.  Improved strategy in analytic surface calculation for molecular systems: Handling of singularities and computational efficiency , 1993, J. Comput. Chem..

[132]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[133]  Duan Chen,et al.  MIBPB: A software package for electrostatic analysis , 2011, J. Comput. Chem..

[134]  O. Choudhary,et al.  The electrostatics of VDAC: implications for selectivity and gating. , 2010, Journal of molecular biology.

[135]  Henri Orland,et al.  Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions , 2000 .

[136]  Serdar Kuyucak,et al.  Recent advances in ion channel research. , 2002, Biochimica et biophysica acta.

[137]  Shan Zhao,et al.  High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .

[138]  Dirk Gillespie,et al.  Discretization of the induced-charge boundary integral equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[139]  Guo-Wei Wei,et al.  Highly accurate biomolecular electrostatics in continuum dielectric environments , 2008, J. Comput. Chem..

[140]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[141]  J. Jerome Analysis of Charge Transport , 1996 .

[142]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[143]  Guo-Wei Wei,et al.  Differential geometry based solvation model. III. Quantum formulation. , 2011, The Journal of chemical physics.

[144]  J. G. Muga,et al.  Moderately dense gas quantum kinetic theory: Aspects of pair correlations , 1996 .

[145]  Luscombe,et al.  Electron confinement in quantum nanostructures: Self-consistent Poisson-Schrödinger theory. , 1992, Physical review. B, Condensed matter.

[146]  R. F. Snider Quantum‐Mechanical Modified Boltzmann Equation for Degenerate Internal States , 1960 .

[147]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[148]  Shan Zhao,et al.  Minimal molecular surfaces and their applications , 2008, J. Comput. Chem..

[149]  Mary Hongying Cheng,et al.  An accurate and efficient empirical approach for calculating the dielectric self-energy and ion-ion pair potential in continuum models of biological ion channels. , 2005, The journal of physical chemistry. B.

[150]  C. Cabrera,et al.  Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing , 2000, Analytical chemistry.

[151]  Tadeusz Nadzieja,et al.  Poisson-Boltzmann equation in ℝ³ , 1991 .

[152]  Xiaosong Huang,et al.  Modeling stresses in the separator of a pouch lithium-ion cell , 2011 .

[153]  Yasushi Shibuta,et al.  Phase-field modeling for electrodeposition process , 2007 .

[154]  Peidong Yang,et al.  Nanofluidic diodes based on nanotube heterojunctions. , 2009, Nano letters.

[155]  A. Duncan,et al.  Improved local lattice approach for Coulombic simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[156]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[157]  Michael Levitt,et al.  Finite‐difference solution of the Poisson–Boltzmann equation: Complete elimination of self‐energy , 1996, J. Comput. Chem..

[158]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[159]  Pei Tang,et al.  Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel. , 2010, Journal of the American Chemical Society.

[160]  J. Sweedler,et al.  Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device. , 2009, Analytical chemistry.

[161]  Frank H. Stillinger,et al.  Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory , 1973 .

[162]  J Norbury,et al.  Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.

[163]  Zhan Chen,et al.  Differential geometry based solvation model II: Lagrangian formulation , 2011, Journal of mathematical biology.

[164]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[165]  Guo-Wei Wei,et al.  Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces , 2007, J. Comput. Phys..

[166]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[167]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[168]  V. Vlachy Ionic effects beyond Poisson-Boltzmann theory. , 2003, Annual review of physical chemistry.

[169]  Julian Schwinger,et al.  Brownian Motion of a Quantum Oscillator , 1961 .

[170]  David Dussault,et al.  Phase-field modeling of transport-limited electrolysis in solid and liquid states , 2007 .

[171]  Howard Reiss,et al.  Further Development of Scaled Particle Theory of Rigid Sphere Fluids , 1970 .

[172]  Qiong Zheng,et al.  Second-order Poisson-Nernst-Planck solver for ion transport , 2011, J. Comput. Phys..

[173]  Guo-Wei Wei,et al.  Quantum dynamics in continuum for proton transport II: Variational solvent–solute interface , 2012, International journal for numerical methods in biomedical engineering.

[174]  Arun Majumdar,et al.  Effects of biological reactions and modifications on conductance of nanofluidic channels. , 2005, Nano letters.

[175]  Benzhuo Lu,et al.  Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach. , 2008, The journal of physical chemistry. B.

[176]  B. Finlayson,et al.  Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. , 1999, Analytical chemistry.

[177]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[178]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.