A Groszek-Laver pair of undistinguishable E0-classes

A generic extension $L[x,y]$ of $L$ by reals $x,y$ is defined, in which the union of $\mathsf E_0$-classes of $x$ and $y$ is a $\Pi^1_2$ set, but neither of these two $\mathsf E_0$-classes is separately ordinal-definable.

[1]  Ronald Jensen Definable Sets of Minimal Degree , 1970 .

[2]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[3]  G. Hjorth Borel Equivalence Relations , 2010 .

[4]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[5]  Ali Enayat On the Leibniz–Mycielski axiom in set theory , 2004 .

[6]  Vassily A. Lyubetsky,et al.  An effective minimal encoding of uncountable sets , 2011 .

[7]  Vladimir Kanovei,et al.  A definable E0 class containing no definable elements , 2015, Arch. Math. Log..

[8]  Marcin Sabok,et al.  Canonical Ramsey Theory on Polish Spaces , 2013 .

[9]  Vladimir Kanovei,et al.  On coding uncountable sets by reals , 2010, Math. Log. Q..

[10]  Richard Laver,et al.  Finite groups ofOD-conjugates , 1987 .

[11]  Jacques Stern,et al.  On Lusin's restricted continuum problem , 1984 .

[12]  Yehoshua Bar-Hillel,et al.  Mathematical Logic and Foundations of Set Theory Proceedings of an International Colloquium Under the Auspices of the Israel Academy of Sciences and Humanities, Jerusalem, 11-14 November 1968 , 1970 .

[13]  Vladimir Kanovei On a Glimm -- Effros dichotomy and an Ulm--type classification in Solovay model , 1995 .

[14]  Vladimir Kanovei An Ulm-Type Classification Theorem for Equivalence Relations in Solovay Model , 1997, J. Symb. Log..

[15]  Alain Louveau,et al.  A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .

[16]  Vladimir Kanovei,et al.  Borel equivalence relations : structure and classification , 2008 .