On the Equivalence of Contraction and Koopman Approaches for Nonlinear Stability and Control

In this paper we prove new connections between two frameworks for analysis and control of nonlinear systems: the Koopman operator framework and contraction analysis. Each method, in different ways, provides exact and global analyses of nonlinear systems by way of linear systems theory. The main results of this paper show equivalence between contraction and Koopman approaches for a wide class of stability analysis and control design problems. In particular: stability or stablizability in the Koopman framework implies the existence of a contraction metric (resp. control contraction metric) for the nonlinear system. Further, in certain cases, the converse holds: contraction implies the existence of a set of observables with which stability can verified via the Koopman framework. Moreover, the converse claims are based on a novel relation between the Koopman method and construction of a Kazantzis-Kravaris-Luenberger observer.

[1]  Jean-Jacques E. Slotine,et al.  Neural Stochastic Contraction Metrics for Learning-Based Control and Estimation , 2021, IEEE Control Systems Letters.

[2]  Ian R. Manchester,et al.  Learning Stable Koopman Embeddings , 2021, 2022 American Control Conference (ACC).

[3]  Derek A. Paley,et al.  Bilinearization, Reachability, and Optimal Control of Control-Affine Nonlinear Systems: A Koopman Spectral Approach , 2021, IEEE Transactions on Automatic Control.

[4]  D. Berenson,et al.  Model Error Propagation via Learned Contraction Metrics for Safe Feedback Motion Planning of Unknown Systems , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[5]  Ian R. Manchester,et al.  Reduced-Order Nonlinear Observers Via Contraction Analysis and Convex Optimization , 2020, IEEE Transactions on Automatic Control.

[6]  Susmit Jha,et al.  Learning Certified Control using Contraction Metric , 2020, CoRL.

[7]  M. K. Camlibel,et al.  Oblique Projected Dynamical Systems and Incremental Stability Under State Constraints , 2020, IEEE Control Systems Letters.

[8]  Todd D. Murphey,et al.  Learning Data-Driven Stable Koopman Operators , 2020, ArXiv.

[9]  Xiaochang A. Wang,et al.  A global Hartman-Grobman theorem , 2020, Commun. Inf. Syst..

[10]  Matthew D. Kvalheim,et al.  Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits , 2019, 1911.11996.

[11]  Ian R. Manchester,et al.  Continuous-time Dynamic Realization for Nonlinear Stabilization via Control Contraction Metrics , 2019, 2020 American Control Conference (ACC).

[12]  Marco Pavone,et al.  Learning stabilizable nonlinear dynamics with contraction-based regularization , 2019, Int. J. Robotics Res..

[13]  Romeo Ortega,et al.  Orbital Stabilization of Nonlinear Systems via Mexican Sombrero Energy Shaping and Pumping-and-Damping Injection , 2019, Autom..

[14]  Vincent Andrieu,et al.  Luenberger Observers for Nonautonomous Nonlinear Systems , 2019, IEEE Transactions on Automatic Control.

[15]  Igor Mezic,et al.  Koopman Operator Family Spectrum for Nonautonomous Systems , 2018, SIAM J. Appl. Dyn. Syst..

[16]  Milan Korda,et al.  Optimal Construction of Koopman Eigenfunctions for Prediction and Control , 2018, IEEE Transactions on Automatic Control.

[17]  Thomas B. Schön,et al.  Maximum likelihood identification of stable linear dynamical systems , 2018, Autom..

[18]  Umesh Vaidya,et al.  Feedback Stabilization Using Koopman Operator , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[19]  Ian R. Manchester,et al.  Robust Control Contraction Metrics: A Convex Approach to Nonlinear State-Feedback ${H}^\infty$ Control , 2018, IEEE Control Systems Letters.

[20]  Igor Mezic,et al.  Koopman Operator Spectrum and Data Analysis , 2017, 1702.07597.

[21]  Alexandre Megretski,et al.  Convex Parameterizations and Fidelity Bounds for Nonlinear Identification and Reduced-Order Modelling , 2017, IEEE Transactions on Automatic Control.

[22]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[23]  Ian R. Manchester,et al.  Nonlinear stabilization via Control Contraction Metrics: A pseudospectral approach for computing geodesics , 2016, 2017 American Control Conference (ACC).

[24]  Steven L. Brunton,et al.  Generalizing Koopman Theory to Allow for Inputs and Control , 2016, SIAM J. Appl. Dyn. Syst..

[25]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[26]  J. Slotine,et al.  Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design , 2015, IEEE Transactions on Automatic Control.

[27]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[28]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[29]  Igor Mezic,et al.  A spectral operator-theoretic framework for global stability , 2013, 52nd IEEE Conference on Decision and Control.

[30]  Ian R. Manchester,et al.  Transverse contraction criteria for existence, stability, and robustness of a limit cycle , 2012, 52nd IEEE Conference on Decision and Control.

[31]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[32]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[33]  Stephen P. Banks,et al.  Linear, Time-varying Approximations to Nonlinear Dynamical Systems: with Applications in Control and Optimization , 2010 .

[34]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[35]  Hongbin Zha,et al.  Riemannian Manifold Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Salim Ibrir,et al.  On observer design for nonlinear systems , 2006, Int. J. Syst. Sci..

[37]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[38]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[39]  Vincent Andrieu,et al.  On the Existence of a Kazantzis--Kravaris/Luenberger Observer , 2006, SIAM J. Control. Optim..

[40]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[41]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[42]  D. Bernstein,et al.  Subspace identification with guaranteed stability using constrained optimization , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[43]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[44]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[45]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[46]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[47]  J. Maciejowski Guaranteed stability with subspace methods , 1995 .

[48]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[49]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[50]  P. Hartman A lemma in the theory of structural stability of differential equations , 1960 .

[51]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[52]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[53]  The Koopman Operator in Systems and Control , 2020, Lecture Notes in Control and Information Sciences.

[54]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[55]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[56]  C. Byrnes Topological Methods for Nonlinear Oscillations , 2010 .

[57]  C. Desoer,et al.  Linear System Theory , 1963 .