Fluidmechanics of semicircular canals – revisited

Abstract.In this work we find the exact solution for the flow field in a semicircular canal which is the main sensor for angular motion in the human body. When the head is rotated the inertia of the fluid in the semicircular canal leads to a deflection of sensory hair cells which are part of a gelatinous structure called cupula. A modal expansion of the governing equation shows that the semicircular organ can be understood as a dynamic system governed by duct modes and a single cupular mode. We use this result to derive an explicit expression for the displacement of the cupula as a function of the angular motion of the head. This result shows in a mathematically and physically clean way that the semicircular canal is a transducer for angular velocity.

[1]  Richard D Rabbitt,et al.  Determinants of spatial and temporal coding by semicircular canal afferents. , 2005, Journal of neurophysiology.

[2]  W. Steinhausen Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts , 1933, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[3]  C. S. Hallpike,et al.  LXXVIII The Pathology, Symptomatology and Diagnosis of Certain Common Disorders of the Vestibular System , 1952 .

[4]  L B Jongkees,et al.  The threshold of angular acceleration perception , 1948, The Journal of physiology.

[5]  L. Jongkees,et al.  The mechanics of the semicircular canal , 1949, The Journal of physiology.

[6]  J. Kevorkian,et al.  Partial Differential Equations: Analytical Solution Techniques , 1990 .

[7]  E. R. Damiano,et al.  A hydroelastic model of macromechanics in the endolymphatic vestibular canal , 1992, Journal of Fluid Mechanics.

[8]  B Cohen,et al.  Model-based study of the human cupular time constant. , 1999, Journal of vestibular research : equilibrium & orientation.

[9]  D. A. Robinson,et al.  Linear addition of optokinetic and vestibular signals in the vestibular nucleus , 1977, Experimental Brain Research.

[10]  Richard D. Rabbitt,et al.  A singular perturbation model of fluid dynamics in the vestibular semicircular canal and ampulla , 1996, Journal of Fluid Mechanics.

[11]  C. S. Hallpike,et al.  The Pathology, Symptomatology and Diagnosis of Certain Common Disorders of the Vestibular System , 1952, Proceedings of the Royal Society of Medicine.

[12]  William C. Van Buskirk,et al.  The effect of the utricle on fluid flow in the semicircular canals , 1977, Annals of Biomedical Engineering.

[13]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[14]  J. Ewald,et al.  Physiologische untersuchungen ueber das Endorgan des nervus Octavus , 1892 .

[15]  C M Oman,et al.  Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. , 1987, Acta oto-laryngologica.

[16]  C M Oman,et al.  Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. , 1987, Acta oto-laryngologica.

[17]  B. Cohen,et al.  Velocity storage in the vestibulo-ocular reflex arc (VOR) , 1979, Experimental Brain Research.

[18]  G. Schmaltz The Physical Phenomena Occurring in the Semicircular Canals during Rotatory and Thermic Stimulation , 1932, The Journal of Laryngology & Otology.

[19]  B. Cohen,et al.  Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after‐nystagmus , 1977, The Journal of physiology.

[20]  C M Oman,et al.  The influence of semicircular canal morphology on endolymph flow dynamics. An anatomically descriptive mathematical model. , 1987, Acta oto-laryngologica.

[21]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook , 1995 .

[22]  Y. K. Liu,et al.  The fluid mechanics of the semicircular canals , 1976, Journal of Fluid Mechanics.

[23]  Richard D. Rabbitt,et al.  Three-Dimensional Biomechanical Model of Benign Paroxysmal Positional Vertigo , 2004, Annals of Biomedical Engineering.

[24]  G. Jones,et al.  A quantitative study of vestibular adaptation in humans. , 1970, Acta oto-laryngologica.

[25]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[26]  S. M. Highstein,et al.  Relationship between Inner-Ear Fluid Pressure and Semicircular Canal Afferent Nerve Discharge , 2002, Journal of the Association for Research in Otolaryngology.

[27]  W. V. Buskirk The biomechanics of the semicircular canals , 1988 .

[28]  L. Gustavsson Energy growth of three-dimensional disturbances in plane Poiseuille flow , 1981, Journal of Fluid Mechanics.