In-situ synthesis of gadolinium niobate quasi-binary composites with balanced mechanical and thermal properties for thermal barrier coatings

[1]  N. M. Mubarak,et al.  Synthesis and thermophysical properties of ethylammonium chloride-glycerol-ZnCl2 ternary deep eutectic solvent , 2020, Journal of Molecular Liquids.

[2]  Q. Gong,et al.  Thermal and mechanical properties of ferroelastic RENbO4 (RE = Nd, Sm, Gd, Dy, Er, Yb) for thermal barrier coatings , 2020 .

[3]  W. Pan,et al.  Mechanical properties, oxygen barrier property, and chemical stability of RE 3 NbO 7 for thermal barrier coating , 2020 .

[4]  Yujing Wang,et al.  Enhancement of thermal properties of ytterbium-cerium oxide by zirconium doping for thermal barrier coatings , 2019, Philosophical Magazine Letters.

[5]  W. Pan,et al.  Diffused Lattice Vibration and Ultralow Thermal Conductivity in the Binary Ln–Nb–O Oxide System , 2019, Advanced materials.

[6]  F. Ye,et al.  Composition-microstructure-mechanical property relationships and toughening mechanisms of GdPO4-doped Gd2Zr2O7 composites , 2019, Composites Part B: Engineering.

[7]  Jing Feng,et al.  Potential thermal barrier coating materials: RE 3 NbO 7 ( RE =La, Nd, Sm, Eu, Gd, Dy) ceramics , 2018, Journal of the American Ceramic Society.

[8]  W. Pan,et al.  A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7 , 2018 .

[9]  Jing Feng,et al.  Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings , 2018 .

[10]  H. Du,et al.  Pinning effect of different shape second-phase particles on grain growth in polycrystalline: numerical and analytical investigations , 2018 .

[11]  M. Ayatollahi,et al.  An improved definition for mode I and mode II crack problems , 2017 .

[12]  J. Ouyang,et al.  Polydomain structures in ferroelectric and ferroelastic epitaxial films , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  W. Pan,et al.  Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications , 2016 .

[14]  Nitin P. Padture,et al.  Advanced structural ceramics in aerospace propulsion. , 2016, Nature materials.

[15]  Sergei V. Kalinin,et al.  Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. , 2016, Nature materials.

[16]  K. Choy,et al.  The synthesis of thermochemically stable single phase lanthanum titanium aluminium oxide , 2016 .

[17]  Xiaoxiang Zhao,et al.  Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics , 2015 .

[18]  W. Kriven,et al.  High‐Temperature Properties and Ferroelastic Phase Transitions in Rare‐Earth Niobates (LnNbO4) , 2014 .

[19]  D. Clarke,et al.  Thermal conductivity of single- and multi-phase compositions in the ZrO2–Y2O3–Ta2O5 system , 2014 .

[20]  W. Pan,et al.  Mechanical properties of high-temperature-degraded yttria-stabilized zirconia , 2014 .

[21]  D. Clarke,et al.  The tetragonal–monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying , 2014 .

[22]  W. Pan,et al.  Thermal conductivity and mechanical properties of YSZ/LaPO4 composites , 2014, Journal of Materials Science.

[23]  W. Pan,et al.  Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores , 2013 .

[24]  Wei Pan,et al.  Low thermal conductivity oxides , 2012 .

[25]  Matthias Oechsner,et al.  Thermal-barrier coatings for more efficient gas-turbine engines , 2012 .

[26]  Hongbo Guo,et al.  Lanthanum–titanium–aluminum oxide: A novel thermal barrier coating material for applications at 1300 °C , 2011 .

[27]  J. C. Chen,et al.  Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore , 2011 .

[28]  D. Stöver,et al.  Overview on advanced thermal barrier coatings , 2010 .

[29]  W. Pan,et al.  Thermal Conductivity of Monazite-Type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd) , 2009 .

[30]  Robert Vassen,et al.  Recent Developments in the Field of Thermal Barrier Coatings , 2009 .

[31]  W. Pan,et al.  Enhanced Mechanical Properties of Machinable LaPO4/Al2O3 Composites by Spark Plasma Sintering , 2009 .

[32]  D. Stöver,et al.  Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings , 2008 .

[33]  D. Stöver,et al.  New Generation Perovskite Thermal Barrier Coating Materials , 2008, International Thermal Spray Conference.

[34]  T. Clyne,et al.  Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications , 2007 .

[35]  A. Evans,et al.  On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  C. Levi,et al.  Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system , 2007 .

[37]  M. Fang,et al.  Effect of point defects on the thermal transport properties of (LaxGd1- x)2Zr2O7 : Experiment and theoretical model , 2006 .

[38]  Dongming Zhu,et al.  Development of Advanced Low Conductivity Thermal Barrier Coatings , 2005 .

[39]  Carlos G. Levi,et al.  MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .

[40]  Robert Vassen,et al.  Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare‐Earth‐Element Zirconate System , 2003 .

[41]  Tadachika Nakayama,et al.  Measurement of microscopic stress distribution of multilayered composite by X-ray stress analysis , 2003 .

[42]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[43]  R. Gadow,et al.  Lanthanum hexaaluminate: novel thermal barrier coatings for gas turbine applications: materials and process development , 2002 .

[44]  P Hiselius,et al.  The New Generation , 2021, The Women's Liberation Movement in Russia.

[45]  J. Rödel,et al.  In Situ Measurements of Bridged Crack Interfaces in the Scanning Electron Microscope , 1990 .

[46]  M. Taya,et al.  Toughening of a particulate-reinforced/ceramic-matrix composite. Technical report , 1989 .

[47]  A. L. Roitburd,et al.  Equilibrium structure of epitaxial layers , 1976 .

[48]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[49]  R. Davidge,et al.  The strength of two-phase ceramic/glass materials , 1968 .

[50]  Jialin Li,et al.  Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications , 2016 .

[51]  W. Pan,et al.  Low Thermal Conductivity of Rare-Earth Zirconate-Stannate Solid Solutions (Yb2Zr2O7)1−x(Ln2Sn2O7)x (Ln = Nd, Sm) , 2016 .

[52]  Mahmood M. Shokrieh,et al.  Non-destructive testing (NDT) techniques in the measurement of residual stresses in composite materials: an overview , 2014 .

[53]  W. Pan,et al.  Rare‐Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings , 2006 .

[54]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .

[55]  Paul S. Prevéy,et al.  X-RAY DIFFRACTION RESIDUAL STRESS TECHNIQUES , 1986 .