Estimation of Chlorophyll-a Concentrations in the Pearl River Estuary Using In Situ Hyperspectral Data: A Case Study

Taking Pearl River Estuary (PRE), China as an example, we explored the potential of in situ hyperspectral data in estimating chlorophyll-a concentrations of turbid waters. Two cruises were conducted on August 21, 2006 and May 18, 2004 to collect the data of water quality and remote sensing reflectance (Rrs). The field surveys showed that chlorophyll-a concentration ranged from 2.97 mu g/L to 49.97 mu g/L, and turbidity 13.6-128.9 NTU. The Rrs spectra were binned to 10 nm resolution, and then processed to be first-order and second-order derivatives. A linear algorithm is developed to estimate chlorophyll-a concentrations based on second order derivative at 670 nm; its mean relative errors of estimation is less than 58% and the root mean square error is 6.69 mu g/L, which is better than other popular algorithms for turbid waters, i.e., the ratio of Rrs at 700 nm and 670 nm. The Case-I algorithm of blue-green band ratio is also proved to be a failed application in PRE, and so does the algorithm of fluorescence line height (FLH), which is questionable for its application in waters with strong light scattering and absorption. All the above work was done without classification of cloud conditions. This suggests that the second-order derivative at 670 nm could be effective for estimation of chlorophyll-a concentrations in turbid waters especially in situ.