Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels.

[1]  J. Falck,et al.  Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. , 2008, American journal of physiology. Heart and circulatory physiology.

[2]  Martin Vingron,et al.  Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease , 2008, Nature Genetics.

[3]  Z. Bosnjak,et al.  Role of sarcolemmal ATP-sensitive potassium channel in oxidative stress-induced apoptosis: mitochondrial connection. , 2008, American journal of physiology. Heart and circulatory physiology.

[4]  E. Jacobs,et al.  Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. , 2008, American journal of physiology. Heart and circulatory physiology.

[5]  G. Gross,et al.  Roles of Epoxyeicosatrienoic Acids in Vascular Regulation and Cardiac Preconditioning , 2007, Journal of cardiovascular pharmacology.

[6]  D. Tao,et al.  Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-α via MAPK and PI3K/Akt signaling pathways , 2007 .

[7]  J. Falck,et al.  Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. , 2007, American journal of physiology. Renal physiology.

[8]  J. Falck,et al.  Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. , 2007, Journal of molecular and cellular cardiology.

[9]  A. A. Spector,et al.  Action of epoxyeicosatrienoic acids on cellular function. , 2007, American journal of physiology. Cell physiology.

[10]  B. Hammock,et al.  Compensatory Mechanism for Homeostatic Blood Pressure Regulation in Ephx2 Gene-disrupted Mice* , 2007, Journal of Biological Chemistry.

[11]  P. Qiu,et al.  Activation of PI3-K/Akt pathway for thermal preconditioning to protect cultured cerebellar granule neurons against low potassium-induced apoptosis , 2007, Acta Pharmacologica Sinica.

[12]  G. Gross,et al.  Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. , 2007, Prostaglandins & other lipid mediators.

[13]  D. Tao,et al.  Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. , 2007, American journal of physiology. Heart and circulatory physiology.

[14]  E. Jacobs,et al.  Emerging mechanisms for growth and protection of the vasculature by cytochrome P450-derived products of arachidonic acid and other eicosanoids. , 2007, Prostaglandins & other lipid mediators.

[15]  Yong Sun,et al.  Changes of mitochondrial pathway in hypoxia/reoxygenation induced cardiomyocytes apoptosis. , 2007, Folia histochemica et cytobiologica.

[16]  Bruce D Hammock,et al.  Soluble epoxide hydrolase inhibition reveals novel biological functions of epoxyeicosatrienoic acids (EETs). , 2007, Prostaglandins & other lipid mediators.

[17]  T. Lu,et al.  Cardiac and vascular KATP channels in rats are activated by endogenous epoxyeicosatrienoic acids through different mechanisms , 2006, The Journal of physiology.

[18]  J. Falck,et al.  Role of Soluble Epoxide Hydrolase in Postischemic Recovery of Heart Contractile Function , 2006, Circulation research.

[19]  E. Jacobs,et al.  Protective effects of epoxyeicosatrienoic acids on human endothelial cells from the pulmonary and coronary vasculature. , 2006, American journal of physiology. Heart and circulatory physiology.

[20]  J. Falck,et al.  Epoxyeicosatrienoic acids in cardioprotection: ischemic versus reperfusion injury. , 2006, American journal of physiology. Heart and circulatory physiology.

[21]  H. Miura,et al.  Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition. , 2006, American journal of physiology. Heart and circulatory physiology.

[22]  J. Falck,et al.  Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. , 2005, Cardiovascular research.

[23]  Hon-chi Lee,et al.  Activation of rat mesenteric arterial KATP channels by 11,12-epoxyeicosatrienoic acid. , 2005, American journal of physiology. Heart and circulatory physiology.

[24]  B. Hammock,et al.  Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. , 2004, American journal of physiology. Heart and circulatory physiology.

[25]  J. Falck,et al.  Enhancement of Cardiac L-Type Ca2+ Currents in Transgenic Mice with Cardiac-Specific Overexpression of CYP2J2 , 2004, Molecular Pharmacology.

[26]  J. Foley,et al.  Enhanced Postischemic Functional Recovery in CYP2J2 Transgenic Hearts Involves Mitochondrial ATP-Sensitive K+ Channels and p42/p44 MAPK Pathway , 2004, Circulation research.

[27]  N. Maulik,et al.  Role of Akt Signaling in Mitochondrial Survival Pathway Triggered by Hypoxic Preconditioning , 2004, Circulation.

[28]  L. Chao,et al.  Adrenomedullin Protects Against Myocardial Apoptosis After Ischemia/Reperfusion Through Activation of Akt-GSK Signaling , 2004, Hypertension.

[29]  I. Findlay ATP-sensitive K+ channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations , 1987, Pflügers Archiv.

[30]  Xiang Fang,et al.  Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. , 2004, Progress in lipid research.

[31]  R. Natarajan,et al.  HETEs/EETs in renal glomerular and epithelial cell functions. , 2003, Current opinion in pharmacology.

[32]  Z. Bosnjak,et al.  Isoflurane Sensitizes the Cardiac Sarcolemmal Adenosine Triphosphate–Sensitive Potassium Channel to Pinacidil , 2003, Anesthesiology.

[33]  R. Busse,et al.  Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. , 2003, American journal of physiology. Heart and circulatory physiology.

[34]  C. Visser,et al.  Apoptosis in myocardial ischaemia and infarction , 2002, Journal of clinical pathology.

[35]  R. Koehler,et al.  Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. , 2002, American journal of physiology. Heart and circulatory physiology.

[36]  E. Marbán,et al.  Antiapoptotic effect of nicorandil mediated by mitochondrial atp-sensitive potassium channels in cultured cardiac myocytes. , 2002, Journal of the American College of Cardiology.

[37]  J. Falck,et al.  14,15-Epoxyeicosa-5(Z)-enoic Acid: A Selective Epoxyeicosatrienoic Acid Antagonist That Inhibits Endothelium-Dependent Hyperpolarization and Relaxation in Coronary Arteries , 2002, Circulation research.

[38]  T. Lu,et al.  Activation of ATP‐sensitive K+ channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes , 2001, The Journal of physiology.

[39]  G. Gross,et al.  Characteristics and Superoxide-Induced Activation of Reconstituted Myocardial Mitochondrial ATP-Sensitive Potassium Channels , 2001, Circulation research.

[40]  E. Marbán,et al.  Mitochondrial ATP-Sensitive Potassium Channels Attenuate Matrix Ca2+ Overload During Simulated Ischemia and Reperfusion , 2001 .

[41]  E. Marbán,et al.  Mitochondrial ATP-Sensitive Potassium Channels Inhibit Apoptosis Induced by Oxidative Stress in Cardiac Cells , 2001, Circulation research.

[42]  R. Kitsis,et al.  Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. , 2000, Journal of molecular and cellular cardiology.

[43]  B D Hammock,et al.  Soluble Epoxide Hydrolase Regulates Hydrolysis of Vasoactive Epoxyeicosatrienoic Acids , 2000, Circulation research.

[44]  J. Falck,et al.  Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. , 2000, Journal of lipid research.

[45]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[46]  D. Zeldin,et al.  Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoic acids. , 1999, Molecular pharmacology.

[47]  R C Scaduto,et al.  Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. , 1999, Biophysical journal.

[48]  J. Falck,et al.  Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. , 1998, The Journal of pharmacology and experimental therapeutics.

[49]  K. Maehara,et al.  Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. , 1998, Circulation.

[50]  C A Beltrami,et al.  Apoptosis in the failing human heart. , 1997, The New England journal of medicine.

[51]  P. M. Wilson,et al.  Retinol is sequestered in the bone marrow of vitamin A-deficient rats. , 1996, The Journal of nutrition.

[52]  堀江 稔 Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells , 1988 .

[53]  A. Noma,et al.  Voltage‐dependent magnesium block of adenosine‐triphosphate‐sensitive potassium channel in guinea‐pig ventricular cells. , 1987, The Journal of physiology.