Multisensory integration in multiple reference frames in the posterior parietal cortex

Spatial information processing takes place in different brain regions that receive converging inputs from several sensory modalities. Because of our own movements—for example, changes in eye position, head rotations, and so forth—unimodal sensory representations move continuously relative to one another. It is generally assumed that for multisensory integration to be an orderly process, it should take place between stimuli at congruent spatial locations. In the monkey posterior parietal cortex, the ventral intraparietal (VIP) area is specialized for the analysis of movement information using visual, somatosensory, vestibular, and auditory signals. Focusing on the visual and tactile modalities, we found that in area VIP, like in the superior colliculus, multisensory signals interact at the single neuron level, suggesting that this area participates in multisensory integration. Curiously, VIP does not use a single, invariant coordinate system to encode locations within and across sensory modalities. Visual stimuli can be encoded with respect to the eye, the head, or halfway between the two reference frames, whereas tactile stimuli seem to be prevalently encoded relative to the body. Hence, while some multisensory neurons in VIP could encode spatially congruent tactile and visual stimuli independently of current posture, in other neurons this would not be the case. Future work will need to evaluate the implications of these observations for theories of optimal multisensory integration.

[1]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[2]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[3]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[4]  E. Bullmore,et al.  Activation of auditory cortex during silent lipreading. , 1997, Science.

[5]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[6]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  M. Tanaka,et al.  Coding of modified body schema during tool use by macaque postcentral neurones. , 1996, Neuroreport.

[8]  G. Rizzolatti,et al.  Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position , 2004, Experimental Brain Research.

[9]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[10]  B. Stein,et al.  Spatial factors determine the activity of multisensory neurons in cat superior colliculus , 1986, Brain Research.

[11]  G. Rizzolatti,et al.  Space coding by premotor cortex , 2004, Experimental Brain Research.

[12]  C. Frith,et al.  Modulation of human visual cortex by crossmodal spatial attention. , 2000, Science.

[13]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[14]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[15]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[16]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[17]  B. Stein,et al.  Interactions among converging sensory inputs in the superior colliculus. , 1983, Science.

[18]  B. Stein,et al.  Spatial determinants of multisensory integration in cat superior colliculus neurons. , 1996, Journal of neurophysiology.

[19]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[20]  K. Hoffmann,et al.  Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements , 2003, The Journal of physiology.

[21]  C. Cavada,et al.  The Visual Parietal Areas in the Macaque Monkey: Current Structural Knowledge and Ignorance , 2001, NeuroImage.

[22]  Tirin Moore,et al.  Complex movements evoked by microstimulation of the ventral intraparietal area , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[24]  M. Wallace,et al.  Representation and integration of multiple sensory inputs in primate superior colliculus. , 1996, Journal of neurophysiology.

[25]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[26]  B. Stein,et al.  Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  V. Jousmäki,et al.  Parchment-skin illusion: sound-biased touch , 1998, Current Biology.

[28]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[29]  M A Meredith,et al.  The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. , 2001, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[30]  S. Iversen,et al.  Detection of Audio-Visual Integration Sites in Humans by Application of Electrophysiological Criteria to the BOLD Effect , 2001, NeuroImage.

[31]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[32]  M. Wallace,et al.  Integration of multiple sensory modalities in cat cortex , 2004, Experimental Brain Research.

[33]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  C. Gross,et al.  The representation of extrapersonal space: A possible role for bimodal, visual-tactile neurons , 1995 .

[35]  B. Stein,et al.  The Merging of the Senses , 1993 .

[36]  J Driver,et al.  Crossmodal Spatial Influences of Touch on Extrastriate Visual Areas Take Current Gaze Direction into Account , 2002, Neuron.

[37]  Angela Sirigu,et al.  Spatial Coding of the Predicted Impact Location of a Looming Object , 2004, Current Biology.

[38]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[39]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses , 1981, Behavioural Brain Research.

[40]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[41]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[42]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[43]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[44]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[45]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[46]  C. Spence,et al.  Crossmodal Space and Crossmodal Attention , 2004 .

[47]  John J. Foxe,et al.  Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. , 2002, Journal of neurophysiology.

[48]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[49]  T. Sejnowski,et al.  Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect. , 2001, Psychological review.