Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions

The study of Rayleigh–Taylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. We show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. These results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. The effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers l=1–12. The jet observed in low mode l=1 is shown to cause the largest ion temperature variation in the mode spectrum. The vortices of high modes within the cold bubbles are shown to cause lower ion temperature variat...

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[3]  M. Dorr,et al.  Improving the capabilities of a continuum laser plasma interaction code , 2006 .

[4]  D. T. Michel,et al.  Three-Dimensional Hydrodynamic Simulations of OMEGA Implosions , 2016 .

[5]  P. Norreys,et al.  Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries. , 2012, Physical review letters.

[6]  Gregory A. Moses,et al.  Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations , 2015 .

[7]  S. Skupsky,et al.  First-principles equation-of-state table of deuterium for inertial confinement fusion applications , 2011, 1110.0001.

[8]  Town,et al.  Three-dimensional simulations of the implosion of inertial confinement fusion targets. , 1991, Physical review letters.

[9]  Brian Spears,et al.  A comprehensive alpha-heating model for inertial confinement fusion , 2018 .

[10]  Riccardo Betti,et al.  Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions , 2007 .

[11]  Alpha Heating and Burning Plasmas in Inertial Confinement Fusion , 2016 .

[12]  J. Kress,et al.  First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  David H. Munro,et al.  Interpreting inertial fusion neutron spectra , 2016 .

[14]  Roy Kishony,et al.  Ignition condition and gain prediction for perturbed inertial confinement fusion targets , 2001 .

[15]  H. Bosch,et al.  ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .

[16]  Pierre Michel,et al.  The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions , 2014 .

[17]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[18]  Steven A. Orszag,et al.  Three-dimensional simulations and analysis of the nonlinear stage of the Rayleigh-Taylor instability , 1995 .

[19]  J Edwards,et al.  Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.

[20]  D. K. Bradley,et al.  Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility , 2014 .

[21]  R. Betti,et al.  Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules , 2001 .

[22]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[23]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[24]  R. Petrasso,et al.  Charged-particle stopping powers in inertial confinement fusion plasmas. , 1993, Physical review letters.

[25]  Thomas J. Murphy,et al.  The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra , 2014 .

[26]  N. Meezan,et al.  Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility. , 2016, Physical review. E.

[27]  A. M. Winslow,et al.  Multi-group diffusion of energetic charged particles , 1975 .

[28]  V N Goncharov,et al.  Core conditions for alpha heating attained in direct-drive inertial confinement fusion. , 2016, Physical review. E.

[29]  Josselin Garnier,et al.  Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules , 2005 .

[30]  Nishihara,et al.  Three-dimensional Rayleigh-Taylor instability of spherical systems. , 1990, Physical review letters.

[31]  Li,et al.  Fokker-Planck equation for moderately coupled plasmas. , 1993, Physical review letters.

[32]  R. Betti,et al.  The Physics of Long- and Intermediate-Wavelength Asymmetries of the Hot Spot , 2017 .

[33]  S. Atzeni REVIEW ARTICLE: The physical basis for numerical fluid simulations in laser fusion , 1987 .

[34]  J. A. Marozas,et al.  Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa) , 2014 .

[35]  V N Goncharov,et al.  Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA. , 2016, Physical review letters.

[36]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[37]  Jianfa Gu,et al.  A new metric of the low-mode asymmetry for ignition target designs , 2014 .

[38]  R. Betti,et al.  Alpha Heating and Burning Plasmas in Inertial Confinement Fusion , 2015, Physical review letters.

[39]  H. Brysk,et al.  Fusion neutron energies and spectra , 1973 .

[40]  R. Betti,et al.  Analytical model of the ablative Rayleigh-Taylor instability in the deceleration phase , 2005 .

[41]  J. Kilkenny,et al.  Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility , 2014 .