Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions
暂无分享,去创建一个
Po-Yu Chang | J. Sanz | P. B. Radha | Riccardo Betti | Ronald M. Epstein | O. M. Mannion | A. R. Christopherson | Hussein Aluie | A. Shvydky | V. Gopalaswamy | Igor V. Igumenshchev | P. Chang | R. Betti | H. Aluie | K. Anderson | J. Delettrez | D. Shvarts | I. Igumenshchev | R. Epstein | J. Sanz | A. Shvydky | A. Bose | Dov Shvarts | J. A. Delettrez | K. Woo | A. Christopherson | K. M. Woo | A. Bose | D. Patel | Rui Yan | M. Charissis | K. S. Anderson | R. Yan | V. Gopalaswamy | O. Mannion | D. Patel | P. Radha | M. Charissis
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[2] V. E. Henson,et al. BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .
[3] M. Dorr,et al. Improving the capabilities of a continuum laser plasma interaction code , 2006 .
[4] D. T. Michel,et al. Three-Dimensional Hydrodynamic Simulations of OMEGA Implosions , 2016 .
[5] P. Norreys,et al. Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries. , 2012, Physical review letters.
[6] Gregory A. Moses,et al. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations , 2015 .
[7] S. Skupsky,et al. First-principles equation-of-state table of deuterium for inertial confinement fusion applications , 2011, 1110.0001.
[8] Town,et al. Three-dimensional simulations of the implosion of inertial confinement fusion targets. , 1991, Physical review letters.
[9] Brian Spears,et al. A comprehensive alpha-heating model for inertial confinement fusion , 2018 .
[10] Riccardo Betti,et al. Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions , 2007 .
[11] Alpha Heating and Burning Plasmas in Inertial Confinement Fusion , 2016 .
[12] J. Kress,et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] David H. Munro,et al. Interpreting inertial fusion neutron spectra , 2016 .
[14] Roy Kishony,et al. Ignition condition and gain prediction for perturbed inertial confinement fusion targets , 2001 .
[15] H. Bosch,et al. ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .
[16] Pierre Michel,et al. The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions , 2014 .
[17] J. Meyer-ter-Vehn,et al. The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .
[18] Steven A. Orszag,et al. Three-dimensional simulations and analysis of the nonlinear stage of the Rayleigh-Taylor instability , 1995 .
[19] J Edwards,et al. Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.
[20] D. K. Bradley,et al. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility , 2014 .
[21] R. Betti,et al. Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules , 2001 .
[22] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[23] Epstein,et al. Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.
[24] R. Petrasso,et al. Charged-particle stopping powers in inertial confinement fusion plasmas. , 1993, Physical review letters.
[25] Thomas J. Murphy,et al. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra , 2014 .
[26] N. Meezan,et al. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility. , 2016, Physical review. E.
[27] A. M. Winslow,et al. Multi-group diffusion of energetic charged particles , 1975 .
[28] V N Goncharov,et al. Core conditions for alpha heating attained in direct-drive inertial confinement fusion. , 2016, Physical review. E.
[29] Josselin Garnier,et al. Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules , 2005 .
[30] Nishihara,et al. Three-dimensional Rayleigh-Taylor instability of spherical systems. , 1990, Physical review letters.
[31] Li,et al. Fokker-Planck equation for moderately coupled plasmas. , 1993, Physical review letters.
[32] R. Betti,et al. The Physics of Long- and Intermediate-Wavelength Asymmetries of the Hot Spot , 2017 .
[33] S. Atzeni. REVIEW ARTICLE: The physical basis for numerical fluid simulations in laser fusion , 1987 .
[34] J. A. Marozas,et al. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa) , 2014 .
[35] V N Goncharov,et al. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA. , 2016, Physical review letters.
[36] Steven W. Haan,et al. Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .
[37] Jianfa Gu,et al. A new metric of the low-mode asymmetry for ignition target designs , 2014 .
[38] R. Betti,et al. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion , 2015, Physical review letters.
[39] H. Brysk,et al. Fusion neutron energies and spectra , 1973 .
[40] R. Betti,et al. Analytical model of the ablative Rayleigh-Taylor instability in the deceleration phase , 2005 .
[41] J. Kilkenny,et al. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility , 2014 .