Cadmium stable isotope cosmochemistry

[1]  D. Ebel,et al.  Condensation in dust-enriched systems , 2023, 2307.00641.

[2]  S. Noble The Lunar Regolith , 2009 .

[3]  R. Andreasen,et al.  Mixing and Homogenization in the Early Solar System: Clues from Sr, Ba, Nd, and Sm Isotopes in Meteorites , 2007 .

[4]  V. K. Rai,et al.  Osmium isotope evidence for uniform distribution of s- and r-process components in the early solar system , 2007 .

[5]  R. Carlson,et al.  Chondrite Barium, Neodymium, and Samarium Isotopic Heterogeneity and Early Earth Differentiation , 2007, Science.

[6]  M. Rehkämper,et al.  New Evidence from Carbonaceous Chondrites for the Presence of Live 205Pb in the Early Solar System , 2007 .

[7]  Mingsheng Wang,et al.  Trace elements in primitive meteorites—VII Antarctic unequilibrated ordinary chondrites , 2007 .

[8]  M. Rehkämper,et al.  Precise determination of cadmium isotope fractionation in seawater by double spike MC-ICPMS , 2007 .

[9]  F. Albarède,et al.  Isotopic composition of zinc, copper, and iron in lunar samples , 2006 .

[10]  R. Andreasen,et al.  Solar Nebula Heterogeneity in p-Process Samarium and Neodymium Isotopes , 2006, Science.

[11]  F. Albarède,et al.  Nuclear field vs. nucleosynthetic effects as cause of isotopic anomalies in the early Solar System , 2006 .

[12]  D. Günther,et al.  Search for nucleosynthetic and radiogenic tellurium isotope anomalies in carbonaceous chondrites , 2006 .

[13]  K. Rosman,et al.  Isotope fractionation of cadmium in lunar material , 2006 .

[14]  J. Luck,et al.  Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes , 2005 .

[15]  D. Günther,et al.  Tellurium isotopic composition of the early solar system : A search for effects resulting from stellar nucleosynthesis, 126Sn decay, and mass-independent fractionation , 2005 .

[16]  M. Lipschutz,et al.  Thermal Metamorphism of Primitive Meteorites—XII. The Enstatite Chondrites Revisited , 2005 .

[17]  A. Kearsley,et al.  Volatile fractionation in the early solar system and chondrule/matrix complementarity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Zolensky,et al.  Osmium Isotope Evidence for an s-Process Carrier in Primitive Chondrites , 2005, Science.

[19]  C. Alexander Re‐examining the role of chondrules in producing the elemental fractionations in chondrites , 2005 .

[20]  D. Günther,et al.  Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites , 2005 .

[21]  J. Grossman,et al.  Alkali elemental and potassium isotopic compositions of Semarkona chondrules , 2005 .

[22]  G. Libourel,et al.  Natural Cadmium Isotopic Variations in Eight Geological Reference Materials (NIST SRM 2711, BCR 176, GSS‐1, GXR‐1, GXR‐2, GSD‐12, Nod‐P‐1, Nod‐A‐1) and Anthropogenic Samples, Measured by MC‐ICP‐MS , 2005 .

[23]  F. Richter,et al.  Isotopic Mass Fractionation Laws and the Initial Solar System 26Al/27Al Ratio , 2005 .

[24]  S. Russell,et al.  Enstatite Chondrites: An Iron and Zinc Isotope Study , 2005 .

[25]  F. Richter,et al.  On the Temperature Dependence of the Kinetic Isotope Fractionation of Type B CAI-like Melts During Evaporation , 2005 .

[26]  F. Richter Timescales determining the degree of kinetic isotope fractionation by evaporation and condensation , 2004 .

[27]  F. Poitrasson,et al.  Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms , 2004 .

[28]  J. Bridges,et al.  Chemical studies of L chondrites. VI: variations with petrographic type and shock-loading among equilibrated falls 1 1 Associate editor: G. Herzog , 2004 .

[29]  M. Rehkämper,et al.  Problems and Suggestions Concerning the Notation of Cadmium Stable Isotope Compositions and the Use of Reference Materials , 2004 .

[30]  D. Günther,et al.  Zirconium isotope evidence for incomplete admixing of r -process components in the solar nebula , 2003 .

[31]  Lawrence A. Taylor,et al.  Space weathering processes on airless bodies: Fe isotope fractionation in the lunar regolith , 2003 .

[32]  M. Rehkämper,et al.  Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS , 2003 .

[33]  H. Hidaka,et al.  Nucleosynthetic components of the early solar system inferred from Ba isotopic compositions in carbonaceous chondrites , 2003 .

[34]  R. Walker,et al.  Efficient mixing of the solar nebula from uniform Mo isotopic composition of meteorites , 2003, Nature.

[35]  R. Carlson,et al.  High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS , 2003 .

[36]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[37]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[38]  R. Hewins,et al.  Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts , 2003 .

[39]  M. Rehkämper,et al.  Determination of the mass-dependence of cadmium isotope fractionation during evaporation , 2002 .

[40]  B. Marty,et al.  Molybdenum Nucleosynthetic Dichotomy Revealed in Primitive Meteorites , 2002 .

[41]  S. Tachibana,et al.  Sulfur Isotope Composition of Putative Primary Troilite in Chondrules , 2002 .

[42]  A. Galy,et al.  Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance , 2002 .

[43]  Q. Yin,et al.  Diverse supernova sources of pre-solar material inferred from molybdenum isotopes in meteorites , 2002, Nature.

[44]  A. Davis,et al.  Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution , 2002 .

[45]  H. Nagahara,et al.  Chemical and isotopic fractionations by evaporation and their cosmochemical implications , 2001 .

[46]  K. Rosman,et al.  Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum , 2001 .

[47]  K. Rosman,et al.  A preliminary study of cadmium mass fractionation in lunar soils , 2001 .

[48]  C. Alexander,et al.  Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation , 2001 .

[49]  H. Nagahara,et al.  Isotopic fractionation as a probe of heating processes in the solar nebula , 2000 .

[50]  Klaus Keil,et al.  Thermal alteration of asteroids: evidence from meteorites , 2000 .

[51]  M. Bourot‐Denise,et al.  The lack of potassium‐isotopic fractionation in Bishunpur chondrules , 2000 .

[52]  M. Lipschutz,et al.  Chemical studies of H chondrites‐10: Contents of thermally labile trace elements are unaffected by late heating , 1999 .

[53]  A. Tsuchiyama,et al.  Evaporation of forsterite in the primordial solar nebula; rates and accompanied isotopic fractionation , 1999 .

[54]  Akihiko Hashimoto,et al.  Evaporation of single crystal forsterite: evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir , 1999 .

[55]  Francis Albarède,et al.  Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry , 1999 .

[56]  M. Lipschutz,et al.  Thermally metamorphosed carbonaceous chondrites from data for thermally mobile trace elements , 1998 .

[57]  B. Mysen,et al.  Non-Rayleigh oxygen isotope fractionation by mineral evaporation: theory and experiments in the system SiO2 , 1998 .

[58]  E. Scott,et al.  Shock metamorphism of enstatite chondrites , 1997 .

[59]  P. Cassen Models for the fractionation of moderately volatile elements in the solar nebula , 1996 .

[60]  Tezer M. Bat Comment on “Potassium isotope cosmochemistry: Genetic implications of volatile element depletion” by Munir Humayun and R. N. Clayton , 1996 .

[61]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[62]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[63]  R. Clayton,et al.  Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils , 1995 .

[64]  K. Jochum,et al.  Fractionation of volatile elements in the early solar system: evidence from heating experiments on primitive meteorites , 1995 .

[65]  W. McDonough,et al.  The composition of the Earth , 1995 .

[66]  M. Lipschutz,et al.  Chemical studies of H chondrites. 4: New data and comparison of Antarctic suites , 1995 .

[67]  M. Lipschutz,et al.  Chemical studies of H chondrites: 6. Antarctic/non‐Antarctic compositional differences revisited , 1995 .

[68]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[69]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[70]  M. Thiemens,et al.  Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites , 1993 .

[71]  H. McSween,et al.  Oxidation during metamorphism of the ordinary chondrites , 1993 .

[72]  M. Lipschutz,et al.  Labile trace elements in carbonaceous chondrites: A survey , 1992 .

[73]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[74]  H. Melosh,et al.  The origin of the moon and the single-impact hypothesis III. , 1991, Icarus.

[75]  H. O’Neill The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon , 1991 .

[76]  R. Clayton,et al.  Isotope mass fractionation during evaporation of Mg2Si04 , 1990, Nature.

[77]  M. Lipschutz,et al.  Chemical studies of L chondrites. IV. Antarctic/non-Antarctic comparisons , 1989 .

[78]  G. Wasserburg,et al.  Origin of opaque assemblages in C3V meteorites - Implications for nebular and planetary processes , 1989 .

[79]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[80]  K. Rosman,et al.  Cadmium mass fractionation in unequilibrated ordinary chondrites , 1988 .

[81]  Dennison,et al.  On volatile/mobile trace element trends in E3 chondrites , 1988 .

[82]  E. Anders,et al.  Ureilites: Trace element clues to their origin , 1987 .

[83]  D. Lingner,et al.  Chemical studies of H chondrites. I: Mobile trace elements and gas retention ages , 1987 .

[84]  M. Lipschutz,et al.  Chemical studies of H chondrites. II: Weathering effects in the Victoria Land, Antarctic population and comparison of two Antarctic populations with non-Antarctic falls , 1987 .

[85]  K. Rosman,et al.  Isotopic Fractionation in Meteoritic Cadmium Revisited , 1986 .

[86]  M. Lipschutz,et al.  Chemical studies of L chondrites. III - Mobile trace elements and Ar-40/Ar-39 ages , 1984 .

[87]  J. Morgan,et al.  Enstatite chondrites: Trace element clues to their origin , 1983 .

[88]  H. Thode,et al.  Sulphur content and sulphur isotope composition of orange and black glasses in Apollo 17 drive tube 74002/1☆ , 1983 .

[89]  M. Lipschutz,et al.  Chemical studies of L chondrites—II. Shock-induced trace element mobilization , 1982 .

[90]  J. Wasson,et al.  The compositional classification of chondrites: III. Ungrouped carbonaceous chondrites , 1982 .

[91]  E. Anders,et al.  Are C1 chondrites chemically fractionated? a trace element study , 1982 .

[92]  N. Bhandari,et al.  The Parsa enstatite chondrite , 1980 .

[93]  K. Rosman,et al.  Cadmium isotope fractionation in fractions of two H3 chondrites , 1980 .

[94]  H. T. Ngo,et al.  Thermal metamorphism of primitive meteorites—X. Additional trace elements in Allende (C3V) heated to 1400° C , 1980 .

[95]  M. Lipschutz,et al.  Thermal metamorphism of primitive meteorites. IX - On the mechanism of trace element loss from Allende heated up to 1400 C , 1980 .

[96]  E. Anders,et al.  Chemical fractionations in meteorites—XI. C2 chondrites , 1980 .

[97]  P. Haff,et al.  Mass fractionation of the lunar surface by solar wind sputtering , 1977 .

[98]  C. Hazard,et al.  The Earth's core , 1977, Nature.

[99]  C. Wai,et al.  Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites , 1976 .

[100]  K. Rosman,et al.  The abundance of cadmium and zinc in meteorites , 1974 .

[101]  M. Lipschutz,et al.  Trace elements in primitive meteorites—V. Abundance patterns of thirteen trace elements and interelement relationships in enstatite chondrites , 1974 .

[102]  J. Larimer Chemical fractionations in meteorites—VII. Cosmothermometry and cosmobarometry , 1973 .

[103]  U. Krähenbühl,et al.  Abundance of 17 trace elements in carbonaceous chondrites. , 1973 .

[104]  J. Morgan,et al.  Chemical fractionations in meteorites—VI. Accretion temperatures of H-, LL- and E-chondrites, from abundance of volatile trace elements , 1973 .

[105]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[106]  E. Anders,et al.  Chemical fractionations in meteorites—IV abundances of fourteen trace elements in L-chondrites; implications for cosmothermometry , 1971 .

[107]  E. Anders,et al.  Trace Elements and Radioactivity in Lunar Rocks: Implications for Meteorite Infall, Solar-Wind Flux, and Formation Conditions of Moon , 1970, Science.

[108]  R. T. Dodd Metamorphism of the ordinary chondrites: A review , 1969 .

[109]  B. Mason Composition of the Earth , 1966, Nature.

[110]  H. Urey ABUNDANCES OF THE ELEMENTS , 1952 .

[111]  E. Young,et al.  Evaporation and Mg Isotope Fractionation: Model Constraints for CAIs , 2007 .

[112]  R. Carlson,et al.  Silver Isotope Fractionation in Chondrites , 2006 .

[113]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[114]  A. Davis,et al.  Condensation and Evaporation of Solar System Materials , 2005 .

[115]  F. Albarède,et al.  Coupled 63Cu and 16O excesses in chondrites , 2003 .

[116]  P. Buseck,et al.  Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites , 2001 .

[117]  S. Taylor,et al.  Isotope fractionation in the solar system , 1999 .

[118]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[119]  D. Sears,et al.  Metamorphism and aqueous alteration in low petrographic type ordinary chondrites , 1995 .

[120]  H. Palme,et al.  Composition and origin of refractory-metal-rich assemblages in a Ca,Al-rich Allende inclusion , 1994 .

[121]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[122]  H. Palme,et al.  Moderately volatile elements. [in meteorites] , 1988 .

[123]  H. Palme,et al.  Moderately volatile elements. , 1988 .

[124]  M. Lipschutz,et al.  Highly labile elements , 1988 .

[125]  J. Morgan,et al.  H-chondrites - Trace element clues to their origin , 1985 .

[126]  R. Housley A model for chemical and isotopic fractionation in the lunar regolith by impact vaporization , 1979 .

[127]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[128]  J. Morgan,et al.  Further studies of trace elements in C3 chondrites , 1978 .

[129]  W. R. Kelly,et al.  Chemical fractionations in meteorites—VIII. Iron meteorites and the cosmochemical history of the metal phase , 1977 .

[130]  J. Wasson,et al.  Pristine nonmare rocks and the nature of the lunar crust , 1977 .

[131]  T. Tombrello,et al.  Ca isotope fractionation on the moon , 1977 .

[132]  M. Lipschutz,et al.  Trace elements in primitive meteorites—VI. Abundance patterns of thirteen trace elements and interelement relationships in unequilibrated ordinary chondrites , 1976 .

[133]  W. Boynton,et al.  Lithophiles, siderophiles, and volatiles in Apollo 16 soils and rocks , 1976 .

[134]  I. Kaplan,et al.  Evidence for meteoritic sulfur in the lunar regolith. , 1975 .

[135]  R. Clayton,et al.  Loss of oxygen, silicon, sulfur, and potassium from the lunar regolith , 1974 .

[136]  P. A. Baedecker,et al.  Atmophilic elements in lunar soils , 1973 .

[137]  U. Krähenbühl,et al.  Volatile elements in Apollo 16 samples - Implications for highland volcanism and accretion history of the moon , 1973 .

[138]  U. Krähenbühl,et al.  Major impacts on the moon - Characterization from trace elements in Apollo 12 and 14 samples. , 1972 .

[139]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[140]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .