Role of fusion in radiotherapy treatment planning.

The fusion of functional imaging to traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), is currently being investigated in radiotherapy treatment planning. Most studies that have been reported are in patients with lung, brain, or head and neck neoplasms. There is a potential role for either positron emission tomography (PET) or single photon emission computed tomography (SPECT) to delineate biologically active or tumor-bearing areas that otherwise would not be detected by CT or MRI. Furthermore, target volumes may be modified by using functional imaging, which can have a significant impact in the modern era of three-dimensional radiotherapy. SPECT may also be able to identify "nonfunctional" surrounding tissue and may influence radiotherapy beam arrangement.

[1]  R L Wahl,et al.  Metastases from non-small cell lung cancer: mediastinal staging in the 1990s--meta-analytic comparison of PET and CT. , 1999, Radiology.

[2]  Merence Sibomana,et al.  Impact of image coregistration with computed tomography (CT), magnetic resonance (MR) and positron emission tomography with fluorodeoxyglucose (FDG-PET) on delineation of GTV’s in oropharyngeal, laryngeal and hypopharyngeal tumors , 2002 .

[3]  H. Groen,et al.  Preoperative staging of non-small-cell lung cancer with positron-emission tomography. , 2000, The New England journal of medicine.

[4]  C. Degueldre,et al.  Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[5]  M. Kris,et al.  Promising survival with three-dimensional conformal radiation therapy for non-small cell lung cancer. , 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  F Dehdashti,et al.  Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  P. Valk,et al.  Cost-effectiveness of PET imaging in clinical oncology. , 1996, Nuclear medicine and biology.

[8]  B J McNeil,et al.  CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. , 1991, Radiology.

[9]  C. Pelizzari,et al.  Functional imaging in treatment planning of brain lesions. , 1997, International journal of radiation oncology, biology, physics.

[10]  M Teräs,et al.  Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. , 2000, International journal of radiation oncology, biology, physics.

[11]  P Okunieff,et al.  Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant glioma. , 1994, International journal of radiation oncology, biology, physics.

[12]  P. Grigsby,et al.  Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. , 2002, International journal of radiation oncology, biology, physics.

[13]  N. Gupta,et al.  Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small ( 3 cm) lymph node lesions. , 2000 .

[14]  H. Tonami,et al.  Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  M. Schwaiger,et al.  Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. , 2002, International journal of radiation oncology, biology, physics.

[16]  D L McShan,et al.  The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. , 1992, International journal of radiation oncology, biology, physics.

[17]  P C Goodman,et al.  Staging non-small cell lung cancer with whole-body PET. , 1999, Radiology.

[18]  R. Coleman,et al.  Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. , 1997, AJR. American journal of roentgenology.

[19]  K. Geisinger,et al.  Positron Emission Tomography in the Evaluation of Laryngeal Carcinoma , 1995, The Annals of otology, rhinology, and laryngology.

[20]  C C Ling,et al.  Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. , 2000, International journal of radiation oncology, biology, physics.

[21]  M. Singer,et al.  Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. , 1999, Radiology.

[22]  R. Tucker,et al.  Impact of fluorine-18 fluorodeoxyglucose positron emission tomography on patient management: first year's experience in a clinical center. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  C B Caldwell,et al.  Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. , 2001, International journal of radiation oncology, biology, physics.

[24]  J. Cappellari,et al.  Preoperative identification of benign versus malignant parotid masses: A comparative study including positron emission tomography , 1995, The Laryngoscope.

[25]  M. Martel,et al.  Dose escalation for non-small cell lung cancer using conformal radiation therapy. , 1997, International journal of radiation oncology, biology, physics.

[26]  J A Purdy,et al.  Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC) , 1999, International journal of radiation oncology, biology, physics.

[27]  U. Pietrzyk,et al.  Detection of Unknown Primary Cancer with Fluor-Deoxy-Glucose Positron Emission Tomography , 1999, The Annals of otology, rhinology, and laryngology.

[28]  M Schwaiger,et al.  Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  S U Berlangieri,et al.  The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. , 1998, Lung cancer.

[30]  K. Geisinger,et al.  A comparative diagnostic study of head and neck nodal metastases using positron emission tomography , 1995, The Laryngoscope.

[31]  A. Dowlati,et al.  Evaluation of pleural diseases with FDG-PET imaging: preliminary report. , 1997, Thorax.

[32]  Tohru Shiga,et al.  Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. , 2002, International journal of radiation oncology, biology, physics.

[33]  Andrew Jackson,et al.  Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. , 2002, International journal of radiation oncology, biology, physics.

[34]  L B Marks,et al.  The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram. , 1995, International journal of radiation oncology, biology, physics.

[35]  Joos V Lebesque,et al.  Optimizing radiation treatment plans for lung cancer using lung perfusion information. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[36]  R Paul,et al.  Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. , 1987, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[37]  T Metens,et al.  Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Technical note. , 2000, Journal of neurosurgery.

[38]  K Schnabel,et al.  18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. , 1999, International journal of radiation oncology, biology, physics.

[39]  R. Coleman,et al.  Serial FDG‐PET Studies in the Prediction of Survival in Patients with Primary Brain Tumors , 1993, Journal of computer assisted tomography.

[40]  J. Matthews,et al.  Early mortality after radical radiotherapy for non-small-cell lung cancer: comparison of PET-staged and conventionally staged cohorts treated at a large tertiary referral center. , 2002, International journal of radiation oncology, biology, physics.

[41]  Curtis B Caldwell,et al.  The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. , 2002, International journal of radiation oncology, biology, physics.

[42]  M Schwaiger,et al.  The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. , 1998, International journal of radiation oncology, biology, physics.

[43]  J. Purdy,et al.  Preliminary results of a prospective trial using three dimensional radiotherapy for lung cancer. , 1995, International journal of radiation oncology, biology, physics.

[44]  T G Turkington,et al.  Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. , 1999, Lung cancer.

[45]  M. Bergström,et al.  Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. , 1985, Journal of computer assisted tomography.

[46]  S Mutic,et al.  A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. , 2001, International journal of radiation oncology, biology, physics.

[47]  M Schwaiger,et al.  First experience with I-123-alpha-methyl-tyrosine spect in the 3-D radiation treatment planning of brain gliomas. , 2000, International journal of radiation oncology, biology, physics.

[48]  V Kalff,et al.  Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  Gerald J. Kutcher,et al.  The impact of 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer , 2000 .

[50]  John L. Humm,et al.  Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[51]  T G Turkington,et al.  The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. , 1993, International journal of radiation oncology, biology, physics.