Ray Tracing Structured AMR Data Using ExaBricks

Structured Adaptive Mesh Refinement (Structured AMR) enables simulations to adapt the domain resolution to save computation and storage, and has become one of the dominant data representations used by scientific simulations; however, efficiently rendering such data remains a challenge. We present an efficient approach for volume- and iso-surface ray tracing of Structured AMR data on GPU-equipped workstations, using a combination of two different data structures. Together, these data structures allow a ray tracing based renderer to quickly determine which segments along the ray need to be integrated and at what frequency, while also providing quick access to all data values required for a smooth sample reconstruction kernel. Our method makes use of the RTX ray tracing hardware for surface rendering, ray marching, space skipping, and adaptive sampling; and allows for interactive changes to the transfer function and implicit iso-surfacing thresholds. We demonstrate that our method achieves high performance with little memory overhead, enabling interactive high quality rendering of complex AMR data sets on individual GPU workstations.

[1]  Aaron Knoll,et al.  CPU Ray Tracing of Tree‐Based Adaptive Mesh Refinement Data , 2020, Comput. Graph. Forum.

[2]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[3]  M. Manzke,et al.  An Analysis of Region Clustered BVH Volume Rendering on GPU , 2019, Comput. Graph. Forum.

[4]  Valerio Pascucci,et al.  Efficient Space Skipping and Adaptive Sampling of Unstructured Volumes Using Hardware Accelerated Ray Tracing , 2019, 2019 IEEE Visualization Conference (VIS).

[5]  I. Wald,et al.  RTX beyond ray tracing: exploring the use of hardware ray tracing cores for tet-mesh point location , 2019, High Performance Graphics.

[6]  Chris R. Johnson,et al.  CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[7]  Aaron Knoll,et al.  CPU volume rendering of adaptive mesh refinement data , 2017, SIGGRAPH Asia Symposium on Visualization.

[8]  R. Wunsch,et al.  SILCC-Zoom: the dynamic and chemical evolution of molecular clouds , 2017, 1704.06487.

[9]  Markus Hadwiger,et al.  State‐of‐the‐Art in GPU‐Based Large‐Scale Volume Visualization , 2015, Comput. Graph. Forum.

[10]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[11]  Mark F. Adams,et al.  Chombo Software Package for AMR Applications Design Document , 2014 .

[12]  Shayan Moini-Yekta,et al.  The LAVA Computational Fluid Dynamics Solver , 2014 .

[13]  E. Ramirez-Ruiz,et al.  Modelling gas evacuation mechanisms in present-day globular clusters: stellar winds from evolved stars and pulsar heating , 2013, Monthly Notices of the Royal Astronomical Society.

[14]  Kwan-Liu Ma,et al.  Efficient parallel volume rendering of large-scale adaptive mesh refinement data , 2013, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV).

[15]  Ralf Kähler,et al.  Single-pass GPU-raycasting for structured adaptive mesh refinement data , 2012, Electronic Imaging.

[16]  Gunther H. Weber,et al.  Efficient parallel extraction of crack-free isosurfaces from adaptive mesh refinement (AMR) data , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[17]  R. Teyssier,et al.  Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations , 2012 .

[18]  David Ellsworth,et al.  Visualization of AMR Data With Multi-Level Dual-Mesh Interpolation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[19]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[20]  Youwei Yuan,et al.  Interactive Ray Tracing for Volume Visualization and 3D Rendering Using Neural Networks , 2009, 2009 WRI Global Congress on Intelligent Systems.

[21]  W. R. Oakes,et al.  The RAGE radiation-hydrodynamic code , 2008, 0804.1394.

[22]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, SIGGRAPH '04.

[23]  Anders Ynnerman,et al.  Multiresolution Interblock Interpolation in Direct Volume Rendering , 2006, EuroVis.

[24]  G. Bryan,et al.  Introducing Enzo, an AMR Cosmology Application , 2004, astro-ph/0403044.

[25]  Chandrajit L. Bajaj,et al.  Case study: Interactive rendering of adaptive mesh refinement data , 2002, IEEE Visualization, 2002. VIS 2002..

[26]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[27]  John Shalf,et al.  Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data , 2001, VisSym.

[28]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[29]  Steven G. Parker,et al.  Uintah: a massively parallel problem solving environment , 2000, Proceedings the Ninth International Symposium on High-Performance Distributed Computing.

[30]  Gediminas Adomavicius,et al.  A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries , 2000 .

[31]  Kwan-Liu Ma,et al.  Parallel rendering of 3D AMR data on the SGI/Cray T3E , 1999, Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation.

[32]  Nelson L. Max,et al.  Sorting for Polyhedron Compositing , 1991, Focus on Scientific Visualization.

[33]  Aaron Knoll,et al.  OSPRay - A CPU Ray Tracing Framework for Scientific Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[34]  David H. Rogers,et al.  Visualization and Analysis of Threats from Asteroid Ocean Impacts , 2016 .

[35]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[36]  Hans-Christian Hege,et al.  GPU-Assisted Raycasting for Cosmological Adaptive Mesh Refinement Simulations , 2006, VG@SIGGRAPH.

[37]  Patric Ljung,et al.  Adaptive Sampling in Single Pass, GPU-based Raycasting of Multiresolution Volumes , 2006, VG@SIGGRAPH.

[38]  L. Sehgal,et al.  Γ and B , 2004 .

[39]  M. Levoy Volume rendering: display of surfaces from volume data , 1988 .

[40]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .