Linear properties of reversed shear Alfvén eigenmodes in the DIII-D tokamak

Linear properties of the reverse shear Alfven eigenmode (RSAE) in a well-diagnosed DIII-D tokamak experiment (discharge #142111) are studied in gyrokinetic particle simulations. Simulations find that a weakly damped RSAE exists due to toroidal coupling and other geometric effects. The mode is driven unstable by density gradients of fast ions from neutral beam injection. Various damping and driving mechanisms are identified and measured in the simulations. Accurate damping and growth rate calculation requires a non-perturbative, fully self-consistent simulation to calculate the true mode structure. The mode structure has no up–down symmetry mainly due to the radial symmetry breaking by the density gradients of the fast ions, as measured in the experiment by electron cyclotron emission imaging. The RSAE frequency up-sweeping and the mode transition from RSAE to TAE (toroidal Alfven eigenmode) are in good agreement with the experimental results when the values of the minimum safety factor are scanned in gyrokinetic simulations.

[1]  S. Pinches,et al.  Theoretical Interpretation of Alfvén Cascades in Tokamaks with Nonmonotonic q Profiles , 2001 .

[2]  Zhihong Lin,et al.  Verification and validation of linear gyrokinetic simulation of Alfvén eigenmodes in the DIII-D tokamak , 2012 .

[3]  R. L. Miller,et al.  ONETWO: a computer code for modeling plasa transport in tokamaks , 1980 .

[4]  M. S. Chance,et al.  Low-n shear Alfven spectra in axisymmetric toroidal plasmas , 1986 .

[5]  S. Sharapov,et al.  Plasma pressure effect on Alfvén cascade eigenmodes , 2005 .

[6]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[7]  S. Pinches,et al.  Theory of Alfvén eigenmodes in shear reversed plasmas , 2003 .

[8]  R. Nazikian,et al.  Finite Pressure Effects on Reversed Shear Alfven Eigenmodes , 2004 .

[9]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[10]  R. Nazikian,et al.  Alfvén eigenmode observations on DIII-D via two-colour CO2 interferometry , 2005 .

[11]  G. Fu,et al.  Kinetic damping of Alfvén eigenmodes in general tokamak geometry , 2008 .

[12]  R. H. Bulmer,et al.  Sustained Spheromak Physics Experiment (SSPX): design and physics results , 2012 .

[13]  Ihor Holod,et al.  Gyrokinetic particle simulation of beta-induced Alfvén eigenmode , 2010 .

[14]  Chen,et al.  Resonant damping of toroidicity-induced shear-Alfvén eigenmodes in tokamaks. , 1992, Physical review letters.

[15]  N. Gorelenkov Existence of weakly damped kinetic Alfvén eigenmodes in reversed shear tokamak plasmas , 2008 .

[16]  I. Holod,et al.  Gyrokinetic particle simulations of reversed shear Alfvén eigenmode excited by antenna and fast ions , 2010 .

[17]  L. L. Lao,et al.  A numerical study of the high‐n shear Alfvén spectrum gap and the high‐n gap mode , 1992 .

[18]  Ambrogio Fasoli,et al.  MHD Spectroscopy through Detecting Toroidal Alfvén Eigenmodes and Alfvén Wave Cascades , 2001 .

[19]  R. Nazikian,et al.  Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging. , 2011, Physical review letters.

[20]  Lindberg,et al.  Continuum damping of high-mode-number toroidal Alfvén waves. , 1991, Physical review letters.

[21]  J. Snipes,et al.  Active and fast particle driven Alfven eigenmodes in Alcator C-Mod , 2004 .

[22]  Tetsuya Sato,et al.  Linear and nonlinear particle-magnetohydrodynamic simulations of the toroidal Alfvén eigenmode , 1998 .

[23]  G. Fu,et al.  Effects of pressure gradient on existence of Alfvén cascade modes in reversed shear tokamak plasmas , 2006 .

[24]  S. Sharapov,et al.  New interpretation of alpha-particle-driven instabilities in deuterium-tritium experiments on the Tokamak Fusion Test Reactor. , 2003, Physical review letters.

[25]  S. Briguglio,et al.  Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks , 1998 .

[26]  Ihor Holod,et al.  Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry , 2009 .

[27]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[28]  R. Nazikian,et al.  Interpretation of the finite pressure gradient effects in the reversed shear Alfvén eigenmode theory , 2006 .

[29]  Liu Chen,et al.  Kinetic theory of low-frequency Alfvén modes in tokamaks , 1996 .

[30]  S. Mahajan,et al.  Kinetic theory of toroidicity-induced alfvén eigenmodes , 1992 .

[31]  Zhihong Lin,et al.  A fluid-kinetic hybrid electron model for electromagnetic simulations , 2001 .

[32]  Neville C. Luhmann,et al.  Measurements and modeling of Alfvén eigenmode induced fast ion transport and loss in DIII-D and ASDEX Upgrade , 2011 .

[33]  Scott E. Parker,et al.  Three-dimensional hybrid gyrokinetic-magnetohydrodynamics simulation , 1992 .

[34]  G. Kramer,et al.  Reversed shear Alfvén eigenmodes associated with the ellipticity and triangularity Alfvén gaps , 2006 .

[35]  T. Oikawa,et al.  Alfvén eigenmode and energetic particle research in JT-60U , 1998 .

[36]  D. Pace,et al.  Convective beam ion losses due to Alfvén eigenmodes in DIII-D reversed-shear plasmas , 2011, Plasma Physics and Controlled Fusion.

[37]  L. Chen,et al.  An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfvén waves in burning plasmas , 2010, 1012.5388.

[38]  R. White,et al.  Canonical Hamiltonian guiding center variables , 1990 .

[39]  F. Levinton,et al.  β suppression of Alfvén cascade modes in the National Spherical Torus Experiment , 2007 .

[40]  Ihor Holod,et al.  Gyrokinetic simulation model for kinetic magnetohydrodynamic processes in magnetized plasmas , 2012 .

[41]  T. Ozeki,et al.  Kinetic reversed-shear Alfvén eigenmodes , 2004 .