The myeloid cells of the central nervous system parenchyma

[1]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[2]  Martine M. Mirrione,et al.  Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice , 2010, Neurobiology of Disease.

[3]  G. Landreth,et al.  The role of microglia in amyloid clearance from the AD brain , 2010, Journal of Neural Transmission.

[4]  S. Hyman A Bone to Pick with Compulsive Behavior , 2010, Cell.

[5]  Petr Tvrdik,et al.  Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice , 2010, Cell.

[6]  D. Hume,et al.  Unravelling mononuclear phagocyte heterogeneity , 2010, Nature Reviews Immunology.

[7]  V. Perry,et al.  Microglia in neurodegenerative disease , 2010, Nature Reviews Neurology.

[8]  Richard M. Page,et al.  Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease , 2010, Nature Neuroscience.

[9]  R. Ransohoff,et al.  Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. , 2010, Journal of immunological methods.

[10]  H. Lassmann,et al.  MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. , 2009, Brain : a journal of neurology.

[11]  R. Ransohoff,et al.  Chemokine receptor CX3CR1 , 2009 .

[12]  R. Ransohoff Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. , 2009, Immunity.

[13]  I. Fariñas,et al.  Glial Precursors Clear Sensory Neuron Corpses during Development via Jedi-1, an Engulfment Receptor , 2009, Nature Neuroscience.

[14]  H. Wekerle,et al.  Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions , 2009, Nature.

[15]  V. Yong,et al.  Taking Advantage of the Systemic Immune System to Cure Brain Diseases , 2009, Neuron.

[16]  G. Landreth,et al.  CD14 and Toll-Like Receptors 2 and 4 Are Required for Fibrillar Aβ-Stimulated Microglial Activation , 2009, The Journal of Neuroscience.

[17]  J. Calderó,et al.  Development of microglia in the chick embryo spinal cord: Implications in the regulation of motoneuronal survival and death , 2009, Journal of neuroscience research.

[18]  J. Ryu,et al.  Fibrinogen signal transduction in the nervous system , 2009, Journal of thrombosis and haemostasis : JTH.

[19]  J. Meldolesi,et al.  The surface‐exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor , 2009, Journal of neurochemistry.

[20]  R. Gross,et al.  Adenosine A2A receptor mediates microglial process retraction , 2009, Nature Neuroscience.

[21]  B. Melchior,et al.  Differential gene expression in LPS/IFNγ activated microglia and macrophages: in vitro versus in vivo , 2009, Journal of neurochemistry.

[22]  J. Nabekura,et al.  Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals , 2009, The Journal of Neuroscience.

[23]  R. Ransohoff,et al.  Localizing central nervous system immune surveillance: Meningeal antigen‐presenting cells activate T cells during experimental autoimmune encephalomyelitis , 2009, Annals of neurology.

[24]  F. Geissmann,et al.  Blood monocytes: development, heterogeneity, and relationship with dendritic cells. , 2009, Annual review of immunology.

[25]  V. Perry,et al.  Microglial physiology: unique stimuli, specialized responses. , 2009, Annual review of immunology.

[26]  Peter Ponsaerts,et al.  Microglia: gatekeepers of central nervous system immunology , 2009, Journal of leukocyte biology.

[27]  A. Luster,et al.  Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. , 2008, Trends in pharmacological sciences.

[28]  E. Chouery,et al.  Mutations in TREM2 lead to pure early‐onset dementia without bone cysts , 2008, Human mutation.

[29]  A. Triller,et al.  Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor , 2008, The Journal of Neuroscience.

[30]  Xiaoming Hu,et al.  Potent Anti-Inflammatory and Neuroprotective Effects of TGF-β1 Are Mediated through the Inhibition of ERK and p47phox-Ser345 Phosphorylation and Translocation in Microglia1 , 2008, The Journal of Immunology.

[31]  C. Gahmberg,et al.  ICAM-5--a novel two-facetted adhesion molecule in the mammalian brain. , 2008, Immunology letters.

[32]  Mark Ellisman,et al.  Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy , 2008, Journal of Neuroscience Methods.

[33]  B. Trapp,et al.  Preconditioning paradigms and pathways in the brain. , 2008, Cleveland Clinic journal of medicine.

[34]  John D. Lambris,et al.  The Classical Complement Cascade Mediates CNS Synapse Elimination , 2007, Cell.

[35]  F. Rossi,et al.  Local self-renewal can sustain CNS microglia maintenance and function throughout adult life , 2007, Nature Neuroscience.

[36]  R. Ransohoff Microgliosis: the questions shape the answers , 2007, Nature Neuroscience.

[37]  A. Mildner,et al.  Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions , 2007, Nature Neuroscience.

[38]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[39]  V. Kuchroo,et al.  CD11b+Ly-6Chi Suppressive Monocytes in Experimental Autoimmune Encephalomyelitis1 , 2007, The Journal of Immunology.

[40]  D. Kerr,et al.  Is neuromyelitis optica distinct from multiple sclerosis?: something for "lumpers" and "splitters". , 2007, Archives of neurology.

[41]  R. Bronson,et al.  Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. , 2007, The American journal of pathology.

[42]  D. Binder,et al.  WILDER PENFIELD, PíO DEL RíO‐HORTEGA, AND THE DISCOVERY OF OLIGODENDROGLIA , 2007, Neurosurgery.

[43]  L. Piccio,et al.  Blockade of TREM‐2 exacerbates experimental autoimmune encephalomyelitis , 2007, European journal of immunology.

[44]  R. Ransohoff,et al.  Inflammatory Cell Migration into the Central Nervous System: A Few New Twists on an Old Tale , 2007, Brain pathology.

[45]  C. Geula,et al.  Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease , 2007, Nature Medicine.

[46]  H. Lassmann,et al.  The fibrin-derived γ377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease , 2007, The Journal of experimental medicine.

[47]  H. Neumann,et al.  Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis , 2007, Journal of Neuroimmunology.

[48]  P. Rezaie,et al.  The origin and cell lineage of microglia—New concepts , 2007, Brain Research Reviews.

[49]  W. Gan,et al.  The P2Y12 receptor regulates microglial activation by extracellular nucleotides , 2006, Nature Neuroscience.

[50]  P. Mazzarello The Impossible Interview with the Man of the Hidden Biological Structures , 2006 .

[51]  F. López-Muñoz,et al.  Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal , 2006, Brain Research Bulletin.

[52]  S. Miller,et al.  CNS dendritic cells: Critical participants in CNS inflammation? , 2006, Neurochemistry International.

[53]  S. Przedborski,et al.  Fractalkine: moving from chemotaxis to neuroprotection , 2006, Nature Neuroscience.

[54]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[55]  H. Kettenmann,et al.  Purinergic signaling and microglia , 2006, Pflügers Archiv.

[56]  B. Becher,et al.  Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain , 2006, Journal of Molecular Medicine.

[57]  Steffen Jung,et al.  The FASEB Journal • Research Communication The neuronal chemokine CX3CL1/fractalkine , 2022 .

[58]  A. Sica,et al.  Macrophage polarization comes of age. , 2005, Immunity.

[59]  E. Ponomarev,et al.  Microglial cell activation and proliferation precedes the onset of CNS autoimmunity , 2005, Journal of neuroscience research.

[60]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[61]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[62]  L. Peltonen,et al.  The genetic causes of basal ganglia calcification, dementia, and bone cysts , 2005, Neurology.

[63]  H. Kettenmann,et al.  Dopamine and noradrenaline control distinct functions in rodent microglial cells , 2005, Molecular and Cellular Neuroscience.

[64]  H. Kettenmann,et al.  Physiology of microglial cells , 2005, Brain Research Reviews.

[65]  S. Miller,et al.  Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis , 2005, Nature Medicine.

[66]  H. Neumann,et al.  Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2 , 2005, The Journal of experimental medicine.

[67]  B. Becher,et al.  Experimental autoimmune encephalomyelitis repressed by microglial paralysis , 2005, Nature Medicine.

[68]  T. Town,et al.  Neuronal expression of CD22: Novel mechanism for inhibiting microglial proinflammatory cytokine production , 2004, Glia.

[69]  M. Bianchin,et al.  Nasu–Hakola Disease (Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy—PLOSL): A Dementia Associated with Bone Cystic Lesions. From Clinical to Genetic and Molecular Aspects , 2004, Cellular and Molecular Neurobiology.

[70]  R. Ransohoff,et al.  The Activation Status of Neuroantigen-specific T Cells in the Target Organ Determines the Clinical Outcome of Autoimmune Encephalomyelitis , 2004, The Journal of experimental medicine.

[71]  F. Fahrenholz,et al.  The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. , 2003, Blood.

[72]  R. Ransohoff,et al.  Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7‐1/B7‐2‐deficient mice , 2003, European journal of immunology.

[73]  John Savill,et al.  A blast from the past: clearance of apoptotic cells regulates immune responses , 2002, Nature Reviews Immunology.

[74]  A. Barclay,et al.  CD200 and membrane protein interactions in the control of myeloid cells. , 2002, Trends in immunology.

[75]  E. Sternberg,et al.  Anti-Inflammatory Cytokines: Expression and Action in the Brain , 2002, Neuroimmunomodulation.

[76]  J. Greer,et al.  Hoxb8 Is Required for Normal Grooming Behavior in Mice , 2002, Neuron.

[77]  M. Graeber,et al.  Transformation of donor‐derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy , 2001, Journal of neuroscience research.

[78]  W. Streit Microglia and macrophages in the developing CNS. , 2001, Neurotoxicology.

[79]  S. Kohsaka,et al.  Microglia: activation and their significance in the central nervous system. , 2001, Journal of biochemistry.

[80]  B. Blom,et al.  Down-regulation of the macrophage lineage through interaction with OX2 (CD200). , 2000, Science.

[81]  J Tanaka,et al.  Nasu–Hakola disease: A review of its leukoencephalopathic and membranolipodystrophic features , 2000, Neuropathology : official journal of the Japanese Society of Neuropathology.

[82]  J. Scholes,et al.  Differences between the clearance of apoptotic cells by professional and non-professional phagocytes , 2000, Current Biology.

[83]  A. Sher,et al.  Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion , 2000, Molecular and Cellular Biology.

[84]  Y. Nakamura,et al.  [Regulating factors for microglial activation]. , 2000, Seikagaku. The Journal of Japanese Biochemical Society.

[85]  L. Adorini,et al.  Functional Maturation of Adult Mouse Resting Microglia into an APC Is Promoted by Granulocyte-Macrophage Colony-Stimulating Factor and Interaction with Th1 Cells1 , 2000, The Journal of Immunology.

[86]  Michael C. Ostrowski,et al.  Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. , 1999, Blood.

[87]  M. Graeber,et al.  The microglia/macrophage response in the neonatal rat facial nucleus following axotomy , 1998, Brain Research.

[88]  W. Streit,et al.  Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[89]  H. Wekerle,et al.  Neuronal Control of the Immune Response in the Central Nervous System: Linking Brain Immunity to Neurodegeneration , 1998, Journal of neuropathology and experimental neurology.

[90]  R. Zhai,et al.  Microglia and astroglia have a common progenitor cell , 1997, Journal of neuroscience research.

[91]  A. Feeney,et al.  Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. , 1996, The EMBO journal.

[92]  K. Ashwell,et al.  The distribution of microglia and cell death in the fetal rat forebrain. , 1991, Brain research. Developmental brain research.

[93]  K. Ashwell,et al.  Microglia and cell death in the developing mouse cerebellum. , 1990, Brain research. Developmental brain research.

[94]  C. Golgi,et al.  On the structure of nerve cells 1 , 1989 .

[95]  W. Hickey,et al.  Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. , 1988, Science.

[96]  V. Perry,et al.  Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain , 1985, Neuroscience.

[97]  W. Penfield Cytology & cellular pathology of the nervous system , 1965 .

[98]  Buchholz Ueber einen Fall syphilitischer Erkrankung des Centralnervensystems , 1899, Archiv für Psychiatrie und Nervenkrankheiten.

[99]  V. Perry,et al.  What is the blood-brain barrier (not)? , 2007, Trends in immunology.

[100]  V. Perry,et al.  What is immune privilege (not)? , 2007, Trends in immunology.

[101]  S. Miller,et al.  Innate and adaptive immune responses of the central nervous system. , 2006, Critical reviews in immunology.

[102]  Y. Barde,et al.  Microglia-Derived Nerve Growth Factor Causes Cell Death in the Developing Retina , 1998, Neuron.

[103]  H. Hartung,et al.  Molecular mechanisms of microglial activation. , 1996, Advances in neuroimmunology.

[104]  C. D. DE GROOT,et al.  Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non‐radioactive in situ hybridization and immunoperoxidase techniques , 1992, Glia.

[105]  Matthew H. Kaufman,et al.  The Atlas of Mouse Development , 1992 .

[106]  S. Fedoroff,et al.  Origin of microglia and their regulation by astroglia. , 1991, Advances in experimental medicine and biology.

[107]  C. Polman,et al.  Macrophages in the central nervous system of the rat. , 1987, Immunobiology.