An Overview of Cognitive Radar: Past, Present, and Future

Modern radar systems face numerous challenges due to requirements of robust, high performance across multiple missions and multiple functions in the face of dynamically changing environments. Cognitive radar has emerged over the past 15 years through synergy of cybernetics, waveform diversity, and knowledge-aided signal processing as a new vision for the future of radar systems that can address these challenges. This article provides an overview of the historical context and mechanisms for cognitive processing in engineering systems, which have driven an evolution in the definition, analysis, and design of cognitive radar. A survey of cognitive radar research trends is given to provide insight on applications and techniques, while technical and practical challenges to future progress are discussed.

[1]  Michael Athans,et al.  1972 IFAC congress paper: On the determination of optimal costly measurement strategies for linear stochastic systems , 1972 .

[2]  J. Fuster Cortex and mind : unifying cognition , 2003 .

[3]  Richard O. Lane,et al.  Cognitive Radar: the Knowledge-Aided Fully Adaptive Approach. J. R. Guerci Artech House, 16 Sussex Street, London, SW1V 4RW, UK. 2010. 175pp. Illustrated. £66. ISBN 978-1-59693-364-4. , 2011, The Aeronautical Journal (1968).

[4]  R. Turyn,et al.  On Barker codes of even length , 1963 .

[5]  Stefan Brüggenwirth,et al.  Design and implementation of a three-layer cognitive radar architecture , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[6]  Dag T. Gjessing Target adaptive matched illumination radar : principles & applications , 1986 .

[7]  K. Kastella,et al.  A Comparison of Task Driven and Information Driven Sensor Management for Target Tracking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  A. Kawalec,et al.  Knowledge-based signal processing for radar identification , 2008, 2008 International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET).

[9]  G. A. Watson,et al.  IMMPDAF for radar management and tracking benchmark with ECM , 1998 .

[10]  Shannon D. Blunt,et al.  Overview of radar waveform diversity , 2016, IEEE Aerospace and Electronic Systems Magazine.

[11]  Alexander Charlish,et al.  Cognitive radar management , 2017 .

[12]  W. K. Stafford Real time control of a multifunction electronically scanned adaptive radar (MESAR) , 1990 .

[13]  Joel T. Johnson,et al.  Cognitive Radar Framework for Target Detection and Tracking , 2015, IEEE Journal of Selected Topics in Signal Processing.

[14]  Joaquín M. Fuster Cortical memory , 2007, Scholarpedia.

[15]  B. Wang,et al.  Optimal Adaptive Waveform Selection for Target Tracking , 2009 .

[16]  Graeme E. Smith,et al.  USRP based cognitive radar testbed , 2017, 2017 IEEE Radar Conference (RadarConf).

[17]  Joseph R. Guerci,et al.  Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise , 1999 .

[18]  William Dale Blair,et al.  Benchmark problem for beam pointing control of phased array radar against maneuvering targets , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[19]  R.J. Evans,et al.  Optimal adaptive waveform selection for target detection , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[20]  Alessio Balleri,et al.  Biologically-Inspired Radar and Sonar: Lessons from nature , 2017 .

[21]  Michael C. Wicks,et al.  Sensors as intelligent robots , 2007 .

[22]  S. J. Anderson Adaptive remote sensing with HF skywave radar , 1992 .

[23]  William L. Melvin,et al.  Knowledge-based space-time adaptive processing , 1997, Proceedings of the 1997 IEEE National Radar Conference.

[24]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[25]  F.F. Kretschmer,et al.  A New Class of Polyphase Pulse Compression Codes and Techniques , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Nathan A. Goodman,et al.  Waveform design by Task-Specific Information , 2010, 2010 IEEE Radar Conference.

[27]  G. V. Keuk,et al.  On phased-array radar tracking and parameter control , 1993 .

[28]  W.L. Melvin,et al.  A knowledge-aided GMTI detection architecture [radar signal processing] , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[29]  Jens Rasmussen,et al.  Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  Yaakov Bar-Shalom,et al.  Benchmark for radar allocation and tracking in ECM , 1998 .

[31]  Joel T. Johnson,et al.  Cognitive radar for target tracking using a software defined radar system , 2015, 2015 IEEE Radar Conference (RadarCon).

[32]  J. Klauder,et al.  The theory and design of chirp radars , 1960 .

[33]  Alfred O. Hero,et al.  Sensor Management: Past, Present, and Future , 2011, IEEE Sensors Journal.

[34]  Ángel F. García-Fernández,et al.  Robust sensor parameter selection in fully adaptive radar using a sigma-point Gaussian approximation , 2018, 2018 IEEE Radar Conference (RadarConf18).

[35]  Simon Haykin Radar vision , 1990, IEEE International Conference on Radar.

[36]  Robin J. Evans,et al.  Optimal waveform selection for tracking systems , 1994, IEEE Trans. Inf. Theory.

[37]  Michael C. Wicks,et al.  A brief history of waveform diversity , 2009, 2009 IEEE Radar Conference.

[38]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1998 .

[39]  W.L. Melvin,et al.  Knowledge-aided signal processing: a new paradigm for radar and other advanced sensors , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[40]  Michael C. Wicks Radar the next generation - sensors as robots , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[41]  H. Chernoff Sequential Design of Experiments , 1959 .

[42]  J. Peschon,et al.  Optimal control of measurement subsystems , 1967, IEEE Transactions on Automatic Control.

[43]  Peter Wellig,et al.  Cognitive radar parameter optimization in a congested spectrum environment , 2018, 2018 IEEE Radar Conference (RadarConf18).

[44]  Edward M. Hofstetter,et al.  On the design of optimum radar waveforms for clutter rejection , 1967, IEEE Trans. Inf. Theory.

[45]  M. Wicks,et al.  Implementing digital terrain data in knowledge-aided space-time adaptive processing , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[46]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[47]  Peter Wellig,et al.  Cognitive Radar Experiments with CODIR , 2017 .

[48]  R.J. Evans,et al.  Waveform selective probabilistic data association , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Simon Haykin,et al.  Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering , 2012, Proceedings of the IEEE.

[50]  J.P. Costas,et al.  A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties , 1983, Proceedings of the IEEE.

[51]  Jens Rasmussen,et al.  Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering , 1986 .

[52]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[53]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[54]  Charles A. Stutt,et al.  A 'best' mismatched filter response for radar clutter discrimination , 1968, IEEE Trans. Inf. Theory.

[55]  Hyondong Oh,et al.  Loughborough University Institutional Repository New multiple target tracking strategy using domain knowledge and optimisation , 2017 .

[56]  Samuel S. Blackman,et al.  IMM/MHT solution to radar benchmark tracking problem , 1999 .

[57]  S. Middelhoek,et al.  Microprocessors get integrated sensors: Sensing devices and signal processing built into one silicon chip portend a new class of ‘smart’ sensors , 1980, IEEE Spectrum.

[58]  Xinhua Mao,et al.  Knowledge-Aided 2-D Autofocus for Spotlight SAR Range Migration Algorithm Imagery , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Hugh Griffiths,et al.  Proposed ontology for cognitive radar systems , 2018, IET Radar, Sonar & Navigation.

[60]  Muralidhar Rangaswamy,et al.  Hierarchical fully adaptive radar , 2018, IET Radar, Sonar & Navigation.

[61]  Fulvio Gini,et al.  Cognitive Radars: On the Road to Reality: Progress Thus Far and Possibilities for the Future , 2018, IEEE Signal Processing Magazine.

[62]  M. Athans On the Determination of Optimal Costly Measurement Strategies for Linear Stochastic Systems , 1972 .

[63]  Leon Reznik,et al.  Distributed Neural Networks for Signal Change Detection: On the Way to Cognition in Sensor Networks , 2011, IEEE Sensors Journal.

[64]  E. Robinson Cybernetics, or Control and Communication in the Animal and the Machine , 1963 .

[65]  Carl W. Helstrom,et al.  Elements of signal detection and estimation , 1994 .

[66]  M. C. Wicks,et al.  CoFAR: Cognitive fully adaptive radar , 2014, 2014 IEEE Radar Conference.

[67]  Simon S. Haykin Adaptive radar: evolution to cognitive radar , 2003, IEEE International Symposium on Phased Array Systems and Technology, 2003..

[68]  Ganesh K. Venayagamoorthy,et al.  Computational Intelligence in Wireless Sensor Networks: A Survey , 2011, IEEE Communications Surveys & Tutorials.

[69]  Muralidhar Rangaswamy,et al.  Cost function design for the fully adaptive radar framework , 2018, IET Radar, Sonar & Navigation.

[70]  Joel T. Johnson,et al.  Experiments with cognitive radar , 2015, IEEE Aerospace and Electronic Systems Magazine.

[71]  B. Widrow,et al.  Adaptive antenna systems , 1967 .

[72]  Shannon D. Blunt,et al.  Radar Spectrum Engineering and Management: Technical and Regulatory Issues , 2015, Proceedings of the IEEE.