Resonance in Elemental Benzenoids

Abstract The phenomenon of resonance amongst a set of different classical chemical structures entails at an elementary level the enumeration of these resonance structures, corresponding (in benzenoid molecules) to perfect matchings of the underlying molecular (π-network) graph. This enumeration is analytically performed here for the finite-sized elemental benzenoid graphs corresponding to hexagonal coverings on suitable closed surfaces, namely the torus and the Klein bottle. Relevance is also indicated for a class of benzenoid structures corresponding to cylinders with polyhex coverings on the sides (but not the “ends”).

[1]  J. Nagle Theory of biomembrane phase transitions , 1973 .

[2]  Carsten Thomassen,et al.  Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface , 1991 .

[3]  N. Trinajstic,et al.  Computer-aided enumeration and generation of the kekulé structures in conjugated hydrocarbons , 1982 .

[4]  F. J. Wunderlich,et al.  Thermodynamics and molecular freedom of dimers on plane honeycomb and Kagomé lattices , 1988 .

[5]  W. H. T. Davison,et al.  Theory of Resonance Topology of Fully Aromatic Hydrocarbons. I , 1952 .

[6]  J. H. AHRENS Paving the Chessboard , 1981, J. Comb. Theory, Ser. A.

[7]  Richard P. Stanley,et al.  On dimer coverings of rectangles of fixed width , 1985, Discret. Appl. Math..

[8]  Jerry Ray Dias A periodic table for polycyclic aromatic hydrocarbons , 1985 .

[9]  S. J. Cyvin,et al.  Kekule Structures in Benzenoid Hydrocarbons , 1988 .

[10]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[11]  Elliott H. Lieb,et al.  Solution of the Dimer Problem by the Transfer Matrix Method , 1967 .

[12]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[13]  D. Klein,et al.  Subgraph generating functions in chemistry- An example for perfect matchings on honeycomb fragments , 1993 .

[14]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[15]  Joachim H. Ahrens,et al.  Functional analysis of subelliptic operators on Lie groups , 1981 .

[16]  Peter E. John,et al.  Counting perfect matchings in polyominoes with an application to the dimer problem , 1987 .

[17]  Douglas J. Klein,et al.  Valence-bond theory and chemical structure , 1990 .

[18]  R. Fowler,et al.  An attempt to extend the statistical theory of perfect solutions , 1937 .

[19]  F. D. Greene Resonance in organic chemistry , 1956 .

[20]  Amos Altshuler,et al.  Construction and enumeration of regular maps on the torus , 1973, Discret. Math..

[21]  Amos Altshuler,et al.  Hamiltonian circuits in some maps on the torus , 1972, Discret. Math..

[22]  Dennis H. Rouvray,et al.  Graph Theory and Topology in Chemistry , 1987 .

[23]  Bhattacharjee,et al.  Finite-size effect for the critical point of an anisotropic dimer model of domain walls. , 1985, Physical review. A, General physics.

[24]  E. Shipsey Collinear hydrogen atom transfer probabilities, O+HBr→OH+Br , 1973 .

[25]  E. Heilbronner,et al.  Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .

[26]  Douglas J. Klein,et al.  Theorems for carbon cages , 1992 .

[27]  A. Clark The theory of adsorption and catalysis , 1970 .

[28]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[29]  Fuji Zhang,et al.  Perfect matchings in hexagonal systems , 1985, Graphs Comb..

[30]  B. Donova-Jerman,et al.  Computer-aided enumeration and generation of the Kekulé structures in conjugated hydrocarbons , 1982, Comput. Chem..

[31]  Klein,et al.  Topological long-range order for resonating-valence-bond structures. , 1991, Physical review. B, Condensed matter.

[32]  Hofreiter Lectures on Matrices , 1935 .

[33]  Colin A. Russell,et al.  The history of valency , 1971 .

[34]  H. Hosoya,et al.  An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two‐ and three‐dimensional rectangular and torus lattices , 1985 .

[35]  Douglas J. Klein,et al.  Dimer coverings and Kekulé structures on honeycomb lattice strips , 1986 .

[36]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[37]  Enumeration of kekulé structures in polymers , 1986 .

[38]  Douglas J. Klein Elemental Benzenoids , 1994, J. Chem. Inf. Comput. Sci..

[39]  J. L. Hock,et al.  A note on the occupational degeneracy for dimers on a saturated two-dimensional lattice space , 1984, Discret. Appl. Math..

[40]  F. Klein Über Riemanns Theorie der Algebraischen Funktionen und Ihrer Integrale , 1923 .

[41]  J. Brankov,et al.  Excess surface free energy in a two-dimensional model of a biomembrane , 1990 .

[42]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[43]  Colin J. Thompson,et al.  Mathematical Statistical Mechanics , 1972 .