Cloud Aerosol Transport System (CATS) 1064 nm Calibration and Validation

The Cloud-Aerosol Transport System (CATS) lidar on board the International Space Station (ISS) operated from 10 February 2015 to 30 October 2017 providing range-resolved vertical backscatter profiles of Earth’s atmosphere at 1064 and 532 nm. The CATS instrument design and ISS orbit lead to a higher 1064 nm signal-to-noise ratio than previous space-based lidars, allowing for direct atmospheric calibration of the 1064 nm signals. Nighttime CATS Version 3–00 data were calibrated by scaling the measured data to a model of the expected atmospheric backscatter between 22 and 26 km above mean sea level (AMSL). The CATS atmospheric model is constructed using molecular backscatter profiles derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) re-analysis data and aerosol scattering ratios measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The nighttime normalization altitude region was chosen to simultaneously minimize aerosol loading and variability within the CATS data frame, which extends from 28 km to −2 km AMSL. Daytime CATS Version 3–00 data were calibrated through comparisons with nighttime measurements of the layer integrated attenuated total backscatter (iATB) from strongly scattering, rapidly attenuating opaque cirrus clouds. The CATS nighttime 1064 nm attenuated total backscatter (ATB) uncertainties for clouds and aerosols are primarily related to the uncertainties in the CATS nighttime calibration technique, which are estimated to be ~9%. Median CATS V3–0

[1]  Y. Gu,et al.  Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study , 2020, Geophysical Research Letters.

[2]  Matthew J. McGill,et al.  Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space , 2019, Geophysical Research Letters.

[3]  Pappalardo,et al.  EARLINET evaluation of the CATS L2 aerosol backscatter coefficient product , 2019 .

[4]  J. Reid,et al.  Investigation of CATS aerosol products and application toward global diurnal variation of aerosols , 2018, Atmospheric Chemistry and Physics.

[5]  Zhaoyan Liu,et al.  CALIPSO lidar calibration at 1064 nm: version 4 algorithm , 2018, Atmospheric Measurement Techniques.

[6]  Vincent Noel,et al.  The diurnal cycle of cloud profiles over land and ocean between 51° S and 51° N, seen by the CATS spaceborne lidar from the International Space Station , 2018, Atmospheric Chemistry and Physics.

[7]  Anne Garnier,et al.  Extinction and optical depth retrievals for CALIPSO's Version 4 data release , 2018, Atmospheric Measurement Techniques.

[8]  J. Kar,et al.  CALIPSO Lidar Calibration at 532 nm: Version 4 Nighttime Algorithm. , 2018, Atmospheric measurement techniques.

[9]  William M. Putman,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[10]  D. Winker,et al.  Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported , 2017, Geophysical research letters.

[11]  J. Yorks,et al.  Using CATS near‐real‐time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts , 2016 .

[12]  Albert Ansmann,et al.  1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study , 2016 .

[13]  Ina Mattis,et al.  EARLINET Single Calculus Chain – technical – Part 2: Calculation of optical products , 2016 .

[14]  M. Vaughan,et al.  An overview of the CATS level 1 processing algorithms and data products , 2016 .

[15]  C. Timmreck,et al.  Stratospheric aerosol—Observations, processes, and impact on climate , 2016 .

[16]  Albert Ansmann,et al.  The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation , 2016 .

[17]  R. Engelmann,et al.  An overview of the first decade of Polly NET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling , 2016 .

[18]  Ulla Wandinger,et al.  EARLINET Single Calculus Chain - overview on methodology and strategy , 2015 .

[19]  L. Mona,et al.  CALIPSO climatological products: evaluation and suggestions from EARLINET , 2015 .

[20]  V. Freudenthaler,et al.  EARLINET Single Calculus Chain – technical – Part 1: Pre-processing of raw lidar data , 2015 .

[21]  Matthew J. McGill,et al.  The Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space Station , 2015, SPIE Optical Engineering + Applications.

[22]  J. Pelon,et al.  Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans , 2015 .

[23]  K. Bedka,et al.  Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution , 2015, Journal of geophysical research. Atmospheres : JGR.

[24]  Robert E. Holz,et al.  Distinguishing cirrus cloud presence in autonomous lidar measurements , 2014 .

[25]  Jun Wang,et al.  Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub‐Saharan African region , 2013 .

[26]  J. Agnew,et al.  Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation , 2013 .

[27]  E. Welton,et al.  Micro-Pulse Lidar Signals: Uncertainty Analysis , 2013 .

[28]  David N Whiteman,et al.  New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols , 2013 .

[29]  V. S. Scott,et al.  Cloud physics lidar: instrument description and initial measurement results. , 2013, Applied optics.

[30]  David M. Winker,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses , 2013 .

[31]  Boon N. Chew,et al.  Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography , 2013 .

[32]  Martin Wirth,et al.  Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX , 2012 .

[33]  D. Winker,et al.  Cloud ice water content retrieved from the CALIOP space‐based lidar , 2012 .

[34]  W. Hart,et al.  Statistics of Cloud Optical Properties from Airborne Lidar Measurements , 2011 .

[35]  Zhaoyan Liu,et al.  On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP's 1064 nm calibration assumptions using cloud physics lidar measurements , 2010 .

[36]  David M. Winker,et al.  CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532-nm Perpendicular Channel , 2009 .

[37]  Alexandros Papayannis,et al.  Systematic lidar observations of Saharan dust layers over Athens, Greece in the frame of EARLINET project (2004–2006) , 2009 .

[38]  D. Balis,et al.  Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece , 2009 .

[39]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[40]  Amico,et al.  One year of CNR-IMAA multi-wavelength Raman lidar measurements in correspondence of CALIPSO overpass: Level 1 products comparison , 2009 .

[41]  Larry W. Thomason,et al.  Tropical stratospheric aerosol layer from CALIPSO lidar observations , 2009 .

[42]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[43]  David M. Winker,et al.  Airborne validation of spatial properties measured by the CALIPSO lidar , 2007 .

[44]  J. Spinhirne,et al.  Cloud and aerosol measurements from GLAS: Overview and initial results , 2005 .

[45]  Zhaoyan Liu,et al.  Validating lidar depolarization calibration using solar radiation scattered by ice clouds , 2004, IEEE Geoscience and Remote Sensing Letters.

[46]  Matthew J. McGill,et al.  Airborne Lidar Measurements of Aerosol Optical Properties During Safari-2000 , 2003 .

[47]  David M. Winker,et al.  Accounting for multiple scattering in retrievals from space lidar , 2003, International Workshop on Lidar Multiple Scattering Experiments.

[48]  Ellsworth J. Welton,et al.  Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars , 2002 .

[49]  Ellsworth J. Welton,et al.  Global monitoring of clouds and aerosols using a network of micropulse lidar systems , 2001, SPIE Asia-Pacific Remote Sensing.

[50]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[51]  J. Spinhirne,et al.  Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mum by airborne hard-target-calibrated Nd:YAG /methane Raman lidar. , 1997, Applied optics.

[52]  David M. Winker,et al.  An overview of LITE: NASA's Lidar In-space Technology Experiment , 1996, Proc. IEEE.

[53]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[54]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[55]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[56]  M. McCormick,et al.  Methodology for error analysis and simulation of lidar aerosol measurements. , 1979, Applied optics.

[57]  C. Platt,et al.  Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements , 1979 .

[58]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[59]  M. Del Guasta Errors in the retrieval of thin-cloud optical parameters obtained with a two-boundary algorithm. , 1998, Applied optics.

[60]  M. Iqbal An introduction to solar radiation , 1983 .

[61]  Philip B. Russell,et al.  Lidar measurement of particles and gases by elastic backscattering and differential absorption , 1976 .