Chromosome evolution in malaria mosquitoes inferred from physically mapped genome assemblies

Polymorphic inversions in mosquitoes are distributed nonrandomly among chromosomes and are associated with ecological, behavioral, and physiological adaptations related to pathogen transmission. Despite their significance, the patterns and mechanism of genome rearrangements are not well understood. Recent sequencing and physical mapping of the genomes for 16 Anopheles mosquito species provided an opportunity to study chromosome evolution at the highest resolution. New studies revealed that fixed rearrangement accumulated [Formula: see text]3 times faster on the X chromosome than on autosomes. The highest densities of transposable elements (TEs) and satellites of different sizes have also been found on the X chromosome, suggesting a mechanism for the inversion generation. The high rate of X chromosome rearrangements is in sharp contrast with the paucity of polymorphic inversions on the X in the majority of anopheline species. This paper highlights the advances in understanding chromosome evolution in malaria vectors and discusses possible future directions in studying mechanisms and biological roles of genome rearrangements.

[1]  Bryan D. Kolaczkowski,et al.  Genomic Differentiation Between Temperate and Tropical Australian Populations of Drosophila melanogaster , 2011, Genetics.

[2]  Jeffrey R. Powell,et al.  FEMALE STERILITY IN HYBRIDS BETWEEN ANOPHELES GAMBIAE AND A. ARABIENSIS, AND THE CAUSES OF HALDANE'S RULE , 2005, Evolution; international journal of organic evolution.

[3]  Jeanne Romero-Severson,et al.  Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus , 2002, Science.

[4]  A. Ruíz,et al.  Chromosomal elements evolve at different rates in the Drosophila genome. , 2002, Genetics.

[5]  M. Coluzzi,et al.  Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. , 1979, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[6]  F. Jongejan,et al.  Molecular characterization of ticks and tick-borne pathogens. , 1999, Parassitologia.

[7]  Jeffrey A. Bailey,et al.  Genome Landscape and Evolutionary Plasticity of Chromosomes in Malaria Mosquitoes , 2010, PloS one.

[8]  D. Haussler,et al.  Hotspots of mammalian chromosomal evolution , 2004, Genome Biology.

[9]  F. Collins,et al.  Maintenance of chromosome arm integrity between two Anopheles mosquito subgenera. , 2000, The Journal of heredity.

[10]  E. Baricheva,et al.  A standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus , 2015, Medical and veterinary entomology.

[11]  B. Cassone,et al.  Differential gene expression in incipient species of Anopheles gambiae , 2008, Molecular ecology.

[12]  M. Cáceres,et al.  Generation of a widespread Drosophila inversion by a transposable element. , 1999, Science.

[13]  M. Kern,et al.  Segmental Duplication Implicated in the Genesis of Inversion 2Rj of Anopheles gambiae , 2007, PloS one.

[14]  F. Simard,et al.  Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. , 2008, Molecular biology and evolution.

[15]  Xiaofang Jiang,et al.  Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi , 2014, Genome Biology.

[16]  Ewan Birney,et al.  Update of the Anopheles gambiae PEST genome assembly , 2007, Genome Biology.

[17]  Matthieu Muffato,et al.  The 3D organization of chromatin explains evolutionary fragile genomic regions. , 2015, Cell reports.

[18]  Josh Goodman,et al.  Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. , 2008, Genetics.

[19]  P. Papathanos,et al.  Demasculinization of the Anopheles gambiae X chromosome , 2012, BMC Evolutionary Biology.

[20]  Michael A Tolle,et al.  Mosquito-borne diseases. , 2009, Current problems in pediatric and adolescent health care.

[21]  Y. Touré,et al.  The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. , 1998, Parassitologia.

[22]  Glenn Tesler,et al.  GRIMM: genome rearrangements web server , 2002, Bioinform..

[23]  N. Besansky,et al.  Inversion 2La is associated with enhanced desiccation resistance in Anopheles gambiae , 2009, Malaria Journal.

[24]  Scott J. Emrich,et al.  The Evolution of the Anopheles 16 Genomes Project , 2013, G3: Genes, Genomes, Genetics.

[25]  Ai Xia,et al.  A physical map for an Asian malaria mosquito, Anopheles stephensi. , 2010, The American journal of tropical medicine and hygiene.

[26]  Nicholas H. Barton,et al.  The Relative Rates of Evolution of Sex Chromosomes and Autosomes , 1987, The American Naturalist.

[27]  Loretta Auvil,et al.  Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. , 2009, Genome research.

[28]  Diego Ayala,et al.  Adaptation through chromosomal inversions in Anopheles , 2014, Front. Genet..

[29]  M. Sharakhova,et al.  Heterochromatin, histone modifications, and nuclear architecture in disease vectors. , 2015, Current opinion in insect science.

[30]  S. Bondarenko,et al.  Tissue-Specific Differences in the Spatial Interposition of X-Chromosome and 3R Chromosome Regions in the Malaria Mosquito Anopheles messeae Fall. , 2015, PloS one.

[31]  Xiaofang Jiang,et al.  Extensive introgression in a malaria vector species complex revealed by phylogenomics , 2015, Science.

[32]  Russell B. Corbett-Detig,et al.  Population Genomics of Inversion Polymorphisms in Drosophila melanogaster , 2012, PLoS genetics.

[33]  J. Powell,et al.  Drosophila Inversion Polymorphism , 1992 .

[34]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[35]  N. Stuurman,et al.  DNA from Drosophila melanogaster beta-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ. , 1996, Gene.

[36]  M. Ashburner,et al.  Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila. , 2010, Genome research.

[37]  F. Mahmood,et al.  Inversion polymorphisms in natural populations of Anopheles stephensi. , 1984, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie.

[38]  Heinz Saedler,et al.  Chromosome rearrangements and transposable elements. , 2002, Annual review of genetics.

[39]  C. A. Machado,et al.  Evaluation of the Genomic Extent of Effects of Fixed Inversion Differences on Intraspecific Variation and Interspecific Gene Flow in Drosophila pseudoobscura and D. persimilis , 2007, Genetics.

[40]  A. Rattray,et al.  Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. , 2007, Frontiers in bioscience : a journal and virtual library.

[41]  Z. Tu,et al.  Multigene Phylogenetics Reveals Temporal Diversification of Major African Malaria Vectors , 2014, PloS one.

[42]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Costantini,et al.  Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso. , 1999, Parassitologia.

[44]  N. Besansky,et al.  2La chromosomal inversion enhances thermal tolerance of Anopheles gambiae larvae , 2009, Malaria Journal.

[45]  N. Besansky,et al.  A microsatellite map of the African human malaria vector Anopheles funestus. , 2004, The Journal of heredity.

[46]  James E. Allen,et al.  Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes , 2014, Science.

[47]  M. Kirkpatrick,et al.  Chromosome Inversions, Local Adaptation and Speciation , 2017, Genetics.

[48]  N. Besansky,et al.  Chromosomal plasticity and evolutionary potential in the malaria vector Anopheles gambiae sensu stricto: insights from three decades of rare paracentric inversions , 2008, BMC Evolutionary Biology.

[49]  Kaushik Sengupta,et al.  Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. , 2008, Genes & development.

[50]  M. Sharakhova,et al.  Arm-specific dynamics of chromosome evolution in malaria mosquitoes , 2011, BMC Evolutionary Biology.

[51]  J. Powell,et al.  Population structure, speciation, and introgression in the Anopheles gambiae complex. , 1999, Parassitologia.

[52]  J. Powell,et al.  The Genetics of Inviability and Male Sterility in Hybrids Between Anopheles gambiae and An. arabiensis , 2004, Genetics.

[53]  C. Meiklejohn,et al.  Little Evidence for Demasculinization of the Drosophila X Chromosome among Genes Expressed in the Male Germline , 2012, Genome biology and evolution.

[54]  I. Sharakhov Protocols for Cytogenetic Mapping of Arthropod Genomes , 2014 .

[55]  A. della Torre,et al.  A Polytene Chromosome Analysis of the Anopheles gambiae Species Complex , 2002, Science.