Modeling of Threshold Voltage Drift in Phase Change Memory (PCM) Devices

The stability of the amorphous phase in phase- change-memory (PCM) devices can be affected by temperature-activated crystallization and resistance drift due to structural relaxation (SR). While amorphous chalcogenides are relatively stable with respect to crystallization, thanks to a high activation energy of about 2.5 eV, the lower activation energy of SR can result in a change of the electronic properties of the PCM, including band-gap, resistance and threshold voltage VT for threshold switching. This work presents a physics- based model for VT drift based on physical models for electrical conduction, threshold switching and SR. We derive an analytical law relating the drift slopes of resistance and VT through the sub- threshold slope (STS) of the I-V curve. A numerical model is then presented, capable of predicting the time evolution of VT for reset and intermediate states in PCM multilevel cell (MLC).

[1]  G. Servalli,et al.  A 45nm generation Phase Change Memory technology , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[2]  Daniele Ielmini,et al.  Common signature of many-body thermal excitation in structural relaxation and crystallization of chalcogenide glasses , 2009 .

[3]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[4]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[5]  Kenneth F. Kelton,et al.  Structural Aspects of Metallic Glasses , 2007 .

[6]  B. Rajendran,et al.  Understanding amorphous states of phase-change memory using Frenkel-Poole model , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[7]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[8]  D. Ielmini,et al.  Understanding Overreset Transition in Phase-Change Memory Characteristics , 2012, IEEE Electron Device Letters.

[9]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[10]  Jiale Liang,et al.  A 1.4µA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[11]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[12]  David Turnbull,et al.  Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation , 1985 .

[13]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[14]  H. K. Kang,et al.  PRAM cell technology and characterization in 20nm node size , 2011, 2011 International Electron Devices Meeting.

[15]  S. Poon,et al.  Generation of dangling bonds by high temperature annealing and hopping conduction in amorphous silicon films , 1980 .

[16]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[17]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I: Experimental Study , 2009, IEEE Transactions on Electron Devices.

[18]  Jacobson,et al.  Structural relaxation and defect annihilation in pure amorphous silicon. , 1991, Physical review. B, Condensed matter.

[19]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[20]  J. Robertson,et al.  Reduction in defect density by annealing in hydrogenated tetrahedral amorphous carbon , 1998 .

[21]  D. Ielmini,et al.  Distributed-Poole-Frenkel modeling of anomalous resistance scaling and fluctuations in phase-change memory (PCM) devices , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[22]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[23]  Yeonwoong Jung,et al.  Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. , 2008, Nano letters.

[24]  D. Ielmini,et al.  Analytical Modeling of Chalcogenide Crystallization for PCM Data-Retention Extrapolation , 2007, IEEE Transactions on Electron Devices.

[25]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .

[26]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[27]  I. Karpov,et al.  Fundamental drift of parameters in chalcogenide phase change memory , 2007 .

[28]  S. Zinkle,et al.  Structural relaxation in amorphous silicon carbide , 2002 .

[29]  D. Ielmini,et al.  Temperature- and time-dependent conduction controlled by activation energy in PCM , 2010, 2010 International Electron Devices Meeting.

[30]  A. Pirovano,et al.  Analysis of phase distribution in phase-change nonvolatile memories , 2004, IEEE Electron Device Letters.

[31]  B. Gleixner,et al.  A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[32]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[33]  D. Ielmini,et al.  Incomplete Filament Crystallization During Set Operation in PCM Cells , 2010, IEEE Electron Device Letters.

[34]  P. Fantini,et al.  Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films , 2012 .

[35]  P. Fantini,et al.  Disorder enhancement due to structural relaxation in amorphous Ge2Sb2Te5 , 2012 .

[36]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .