Boundary control of a flexible marine riser with vessel dynamics

In this paper, boundary control of a flexible marine riser with vessel dynamics is developed to reduce the riser's vibrations. To provide an accurate and concise representation of the riser's dynamic behavior, the distributed parameter model of the flexible marine riser with vessel dynamics is described by a partial differential equation (PDE) coupled with ordinary differential equations (ODEs) involving functions of space and time. Boundary control is developed at the top boundary of the riser based on Lyapunov's direct method to regulate the riser's vibrations. With the proposed boundary control, uniform boundedness is achieved. The boundary control is implementable with actual instrumentation since all the signals in the control can be measured by sensors or calculated by a backwards difference algorithm. Simulations are provided to illustrate the effectiveness of the proposed control.

[1]  K. Hong,et al.  Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension , 2004 .

[2]  Shuzhi Sam Ge,et al.  A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model , 1997, J. Field Robotics.

[3]  R. Jackson Inequalities , 2007, Algebra for Parents.

[4]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[5]  B. V. E. Howa,et al.  Active control of flexible marine risers , 2008 .

[6]  Julio Romano Meneghini,et al.  Numerical Simulations of Vortex-Induced Vibration of Flexible Cylinders , 2002 .

[7]  Sakdirat Kaewunruen,et al.  Nonlinear free vibrations of marine risers/pipes transporting fluid , 2005 .

[8]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  Miroslav Krstic,et al.  Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback , 2009, IEEE Transactions on Automatic Control.

[10]  Cassio T. Yamamoto,et al.  Numerical simulations of vortex-induced vibration on flexible cylinders , 2004 .

[11]  P. Christofides,et al.  Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control , 2000 .

[12]  Ö. Morgül Dynamic boundary control of a Euler-Bernoulli beam , 1992 .

[13]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[14]  Rajnikant V. Patel,et al.  End-point control of a flexible-link manipulator: theory and experiments , 1997, IEEE Trans. Control. Syst. Technol..

[15]  Fumitoshi Matsuno,et al.  Robust boundary control of an axially moving string by using a PR transfer function , 2005, IEEE Transactions on Automatic Control.

[16]  C. Rahn,et al.  ACTIVE BOUNDARY CONTROL OF ELASTIC CABLES: THEORY AND EXPERIMENT , 1996 .

[17]  Shuzhi Sam Ge,et al.  Model-free regulation of multi-link smart materials robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  Fumitoshi Matsuno,et al.  Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation , 2005, IEEE Transactions on Control Systems Technology.

[19]  Prodromos Daoutidis,et al.  Dynamics of a reaction-diffusion system with Brusselator kinetics under feedback control , 1999 .

[20]  Frank L. Lewis,et al.  Flexible-link robot arm control by a feedback linearization/singular perturbation approach , 1994, J. Field Robotics.

[21]  K. Hong,et al.  Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control , 2010 .

[22]  M. Köhler,et al.  Pointwise maximum principle for convex optimal control problems with mixed control-phase variable inequality constraints , 1980 .

[23]  Shuzhi Sam Ge,et al.  Active control of flexible marine risers , 2009 .

[24]  L. Meirovitch,et al.  On the problem of observation spillover in self-adjoint distributed-parameter systems , 1983 .

[25]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996 .

[26]  Shuzhi Sam Ge,et al.  Boundary Control of a Coupled Nonlinear Flexible Marine Riser , 2010, IEEE Transactions on Control Systems Technology.

[27]  Shuzhi Sam Ge,et al.  Control of Coupled Vessel, Crane, Cable, and Payload Dynamics for Subsea Installation Operations , 2011, IEEE Transactions on Control Systems Technology.

[28]  K. D. Do,et al.  Boundary control of transverse motion of marine risers with actuator dynamics , 2008 .

[29]  Fumitoshi Matsuno,et al.  Modeling and feedback control of a flexible arm , 1985, J. Field Robotics.

[30]  Fumitoshi Matsuno,et al.  Simple Boundary Cooperative Control of Two One-Link Flexible Arms for Grasping , 2009, IEEE Transactions on Automatic Control.

[31]  Svein I. Sagatun,et al.  Exponential Stabilization of a Transversely Vibrating Beam by Boundary Control Via Lyapunov’s Direct Method , 2001 .

[32]  Zhihua Qu,et al.  Robust and adaptive boundary control of a stretched string on a moving transporter , 2001, IEEE Trans. Autom. Control..

[33]  Shuzhi Sam Ge,et al.  Variable structure control of a distributed‐parameter flexible beam , 2001 .

[34]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[35]  Rong-Fong Fung,et al.  Boundary Control of an Axially Moving String Via Lyapunov Method , 1999 .

[36]  Christopher D. Rahn,et al.  Mechatronic control of distributed noise and vibration , 2001 .

[37]  Shuzhi Sam Ge,et al.  Adaptive robust controller design for multi-link flexible robots , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[38]  Shuzhi Sam Ge,et al.  Adaptive robust controller design for multi-link flexible robots , 2001 .

[39]  Subrata K. Chakrabarti,et al.  Review of riser analysis techniques , 1982 .

[40]  Shuzhi Sam Ge,et al.  A Quasi-Tracking Approach for Finite-Time Control of a Mass-Beam System , 1998, Autom..

[41]  Darren M. Dawson,et al.  Asymptotically Stabilizing Angle Feedback for a Flexible Cable Gantry Crane , 1999 .

[42]  M. H. Patel,et al.  Theory and model tests for the dynamic response of free hanging risers , 1987 .

[43]  Amr M. Baz DYNAMIC BOUNDARY CONTROL OF BEAMS USING ACTIVE CONSTRAINED LAYER DAMPING , 1997 .

[44]  P. Christofides,et al.  Wave suppression by nonlinear finite-dimensional control , 2000 .

[45]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[46]  Juan B. V. Wanderley,et al.  Vortex induced loads on marine risers , 2005 .

[47]  G S.S. NON-MODEL-BASED POSITION CONTROL OF A PLANAR MULTI-LINK FLEXIBLE ROBOT , 1997 .

[48]  Shuzhi Sam Ge,et al.  Improving regulation of a single-link flexible manipulator with strain feedback , 1998, IEEE Trans. Robotics Autom..

[49]  A. Bokaian,et al.  Natural frequencies of beams under tensile axial loads , 1990 .

[50]  M. Balas Active control of flexible systems , 1978 .

[51]  Julio Romano Meneghini,et al.  Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields , 2004 .

[52]  Jun-feng Li,et al.  Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback , 2008, Autom..

[53]  J. W. Humberston Classical mechanics , 1980, Nature.