Second-harmonic generation in AlGaAs-on-insulator waveguides.

Second-harmonic generation is demonstrated in AlGaAs-on-insulator waveguides at telecom wavelengths. Using this material platform, a maximum internal normalized efficiency of 1202±55%  W-1 cm-2 is achieved for a 100 fs pulsed excitation wavelength at 1560 nm. This finding is important towards enabling new chip-scale devices for sensing, metrology, and quantum optics.

[1]  Leif Katsuo Oxenløwe,et al.  Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip , 2018, 2019 Asia Communications and Photonics Conference (ACP).

[2]  A. Lemaître,et al.  Directionally induced quasi-phase matching in homogeneous AlGaAs waveguides. , 2017, Optics letters.

[3]  Zhenshan Yang,et al.  Enhanced second-harmonic generation in AlGaAs microring resonators. , 2007, Optics letters.

[4]  Barry M. Holmes,et al.  Recent advances in phase matching of second‐order nonlinearities in monolithic semiconductor waveguides , 2011 .

[5]  A. Helmy,et al.  Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment , 2010 .

[6]  H. Miao,et al.  Analysis of ultrashort-pulse second-harmonic generation in both phase- and group-velocity-matched structures , 2005 .

[7]  Shanhui Fan,et al.  Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities. , 2006, Optics letters.

[8]  Timurbek Usmanov,et al.  Limitation of second-harmonic generation of femtosecond Ti:sapphire laser pulses , 2004 .

[9]  J. S. Aitchison,et al.  AlGaAs Below Half Bandgap:. the Silicon of Nonlinear Optical Materials , 1994 .

[10]  Emilio Gualda,et al.  Ultrashort pulse characterisation with SHG collinear-FROG. , 2004, Optics express.

[11]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[12]  Makoto Ohashi,et al.  Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics , 1993 .

[13]  Brian S. Wherrett,et al.  Scaling rules for multiphoton interband absorption in semiconductors , 1984 .

[14]  O. Painter,et al.  Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities , 2007 .

[15]  Andre Knoesen,et al.  Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses , 1995 .

[16]  C. Bain,et al.  Time-resolved phase-sensitive second harmonic generation spectroscopy. , 2015, The Journal of chemical physics.

[17]  S. Fathpour,et al.  Second‐Harmonic Generation in Integrated Photonics on Silicon , 2018 .

[18]  Siegfried Janz,et al.  Second-harmonic generation at l=1.6 micro m in AlGaAs/Al2O3 waveguides using birefringence phase matching , 1998 .

[19]  R. Alfano,et al.  Temporal behavior of cross-phase-modulated second-harmonic generation of ultrashort laser pulses in nonlinear-optical media , 1990 .

[20]  Tymon Barwicz,et al.  Optimization of hydrogen silsesquioxane for photonic applications , 2007 .

[21]  Daniele Melati,et al.  A unified approach for radiative losses and backscattering in optical waveguides , 2014 .

[22]  Po-Tsun Liu,et al.  Improvement of Hydrogenated Amorphous-Silicon TFT Performances With Low-$k$Siloxane-Based Hydrogen Silsesquioxane (HSQ) Passivation Layer , 2006, IEEE Electron Device Letters.

[23]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[24]  A.E. Willner,et al.  All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices , 2006, Journal of Lightwave Technology.

[25]  John E. Bowers,et al.  Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion , 2018, Laser & Photonics Reviews.

[26]  Mansoor Sheik-Bahae,et al.  Limitation due to three‐photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap , 1994 .

[27]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[28]  M. Sorel,et al.  Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators. , 2015, Optics letters.

[29]  Elsa Garmire,et al.  Nonlinear optics in daily life. , 2013, Optics express.

[30]  Wang,et al.  Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals. , 1987, Physical review. A, General physics.

[31]  H. Ishikawa,et al.  Birefringent Phase Matching in Thin Rectangular High-Index-Contrast Waveguides , 2009 .

[32]  B. Richter,et al.  Comparison of three transmission methods for integrated optical waveguide propagation loss measurement , 1993 .

[33]  A. Locatelli,et al.  Second harmonic generation in AlGaAs photonic wires using low power continuous wave light. , 2011, Optics express.

[34]  F. Payne,et al.  A theoretical analysis of scattering loss from planar optical waveguides , 1994 .

[35]  V. Petrov,et al.  Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals , 2001 .

[36]  J. S. Aitchison,et al.  The nonlinear optical properties of AlGaAs at the half band gap , 1997 .

[37]  Toshio Morioka,et al.  Single-source chip-based frequency comb enabling extreme parallel data transmission , 2018, Nature Photonics.

[38]  A. Arie,et al.  Frequency conversion in novel materials and its application to high resolution gas sensing , 2002 .

[39]  T. Murphy,et al.  Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides. , 2014, Optics letters.

[40]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .