A Karhunen-Loeve Galerkin Technique with Shock Fitting for Optimization of a Blunt Body Geometry

A novel Karhunen-Loève (KL) Galerkin model for the supersonic, inviscid flow of a calorically perfect ideal gas about an axisymmetric, blunt body employing shock fitting is developed. The motivation for developing the KL Galerkin model is the need for an accurate and computationally efficient model for use in the optimal design of hypersonic vehicles. In constructing a KL Galerkin model, a set of flow field solutions representative of the design space are required. For this, a global polynomial pseudospectral method for the generalized coordinate, nonconservative form of the Euler equations is implemented. The variables in the equations are collocated via Lagrange interpolating polynomials defined at the zeroes of the Chebyshev polynomials, i.e. ChebyshevGauss-Lobatto nodes. Code verification, validation and grid convergence results are shown for the pseudospectral code, and an optimal geometry is identified from a single degree of freedom family of geometries. In conclusion the KL modes derived from pseudospectral solutions at Mach 3.5 from a uniform sampling of the design space are presented. This will be used in forthcoming work to develop a KL Galerkin model for the blunt body optimization.

[1]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[2]  Chia-Ch'iao Lin,et al.  On the Flow Behind Curved Shocks , 1948 .

[3]  J. Renaud,et al.  Trust region model management in multidisciplinary design optimization , 2000 .

[4]  J. Anderson,et al.  Hypersonic and High-Temperature Gas Dynamics , 2019 .

[5]  Lawrence Sirovich,et al.  Turbulent thermal convection in a finite domain: Part II. Numerical results , 1990 .

[6]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[7]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[8]  Marc A. Stelmack,et al.  Framework for Multidisciplinary Design Based on Response-Surface Approximations , 1999 .

[9]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[10]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[11]  E. Zafiriou,et al.  Model reduction for optimization of rapid thermal chemical vapor deposition systems , 1998 .

[12]  V V Rusanov A Blunt Body in a Supersonic Stream , 1976 .

[13]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[14]  Hyung-Min Park,et al.  Solution of inverse radiation problems using the Karhunen–Loève Galerkin procedure , 2001 .

[15]  Juan J. Alonso,et al.  Airfoil design optimization using reduced order models based on proper orthogonal decomposition , 2000 .

[16]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[17]  Lawrence Sirovich,et al.  Turbulent thermal convection in a finite domain: Part I. Theory , 1990 .

[18]  F. S. Billig,et al.  Shock-wave shapes around spherical-and cylindrical-nosed bodies. , 1967 .

[19]  M. D. Salas,et al.  Spectral methods for the Euler equations , 1983 .

[20]  Hsueh-Chia Chang,et al.  Accelerated disturbance damping of an unknown distributed system by nonlinear feedback , 1992 .

[21]  Michael B. Bieterman,et al.  Practical considerations in aerodynamic design optimization , 1995 .

[22]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[23]  Ronald F. Probstein,et al.  Hypersonic Flow Theory , 1959 .

[24]  H. M. Park,et al.  Solution of an inverse heat transfer problem by means of empirical reduction of modes , 2000 .

[25]  N. H. Johannesen,et al.  Hypersonic Flow , 1967, Nature.

[26]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[27]  H. Park,et al.  Recursive solution of an inverse heat transfer problem in rapid thermal processing systems , 2001 .

[28]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[29]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[30]  G. Moretti,et al.  A time-dependent computational method for blunt body flows. , 1966 .

[31]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[32]  P. R. Garabedian,et al.  On the Numerical Calculation of Detached Bow Shock Waves in Hypersonic Flow , 1958 .

[33]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[34]  Hyung-Min Park,et al.  Reduction of modes for the solution of inverse natural convection problems , 2000 .

[35]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[36]  Hyung-Min Park,et al.  Boundary control of the Navier-Stokes equation by empirical reduction of modes , 2000 .

[37]  M. D. Vandyke The supersonic blunt-body problem - Review and extension , 1972 .

[38]  Ethiraj Venkatapathy,et al.  Computational Aerothermodynamic Design Issues for Hypersonic Vehicles , 1997 .

[39]  M. D. Salas,et al.  Spectral methods for the Euler equations. I - Fourier methods and shock capturing , 1985 .

[40]  H. Park,et al.  The Karhunen-Loève Galerkin method for the inverse natural convection problems , 2001 .

[41]  Antony Jameson,et al.  Re-engineering the design process through computation , 1997 .

[42]  H. Park,et al.  An efficient method of solving the Navier–Stokes equations for flow control , 1998 .

[43]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[44]  David A. Kopriva,et al.  Shock-fitted multidomain solution of supersonic flows , 1999 .

[45]  Juan J. Alonso,et al.  Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers , 1996 .

[46]  P. I. Chushkin Hypersonic flow theory, Vol. 1. Inviscid flows: W.D. Hayes and F.R. Probstein. New York — London, 1966, XV + 602 pp. $ 16.50☆ , 1967 .

[47]  J. Lumley Stochastic tools in turbulence , 1970 .

[48]  Control of Navier-Stokes equations by means of mode reduction , 2000 .

[49]  H. Park,et al.  A method of solving inverse convection problems by means of mode reduction , 1998 .