Critical thoughts on computing atom condensed Fukui functions.

Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory.

[1]  Revisiting the calculation of condensed Fukui functions using the quantum theory of atoms in molecules. , 2007, The Journal of chemical physics.

[2]  P. Ayers,et al.  Computing Fukui functions without differentiating with respect to electron number. I. Fundamentals. , 2007, The Journal of chemical physics.

[3]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[4]  James S. M. Anderson,et al.  Conceptual Density-Functional Theory for General Chemical Reactions, Including Those That Are Neither Charge- nor Frontier-Orbital-Controlled. 2. Application to Molecules Where Frontier Molecular Orbital Theory Fails. , 2007, Journal of chemical theory and computation.

[5]  Paul W. Ayers,et al.  Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans’ theorem , 2007 .

[6]  Joel S. Miller,et al.  Synthesis, structure, and magnetic properties of valence ambiguous dinuclear antiferromagnetically coupled cobalt and ferromagnetically coupled iron complexes containing the chloranilate(2-) and the significantly stronger coupling chloranilate(*3-) radical trianion. , 2007, Journal of the American Chemical Society.

[7]  P. Ayers The physical basis of the hard/soft acid/base principle. , 2007, Faraday discussions.

[8]  Patrick Bultinck,et al.  Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. , 2007, Faraday discussions.

[9]  P. Ayers Can one oxidize an atom by reducing the molecule that contains it? , 2006, Physical chemistry chemical physics : PCCP.

[10]  Alejandro Toro-Labbé,et al.  Theoretical support for using the Δf(r) descriptor , 2006 .

[11]  Weitao Yang,et al.  Legendre-transform functionals for spin-density-functional theory. , 2006, The Journal of chemical physics.

[12]  R. Parr,et al.  Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. , 2006, The Journal of chemical physics.

[13]  Chérif F Matta,et al.  An experimentalist's reply to "What is an atom in a molecule?". , 2006, The journal of physical chemistry. A.

[14]  Paul W. Ayers,et al.  Information Theory, the Shape Function, and the Hirshfeld Atom , 2006 .

[15]  J. V. Ortiz,et al.  The electron-propagator approach to conceptual density-functional theory , 2005 .

[16]  P. Senet,et al.  Relation between the Fukui function and the Coulomb hole , 2005 .

[17]  P. Ayers,et al.  The maximum hardness principle implies the hard/soft acid/base rule. , 2005, The Journal of chemical physics.

[18]  P. Ayers An elementary derivation of the hard/soft-acid/base principle. , 2005, The Journal of chemical physics.

[19]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[20]  P. Ayers,et al.  An example where orbital relaxation is an important contribution to the Fukui function. , 2005, The journal of physical chemistry. A.

[21]  Alejandro Toro-Labbé,et al.  New dual descriptor for chemical reactivity. , 2005, The journal of physical chemistry. A.

[22]  James S. M. Anderson,et al.  Perturbative perspectives on the chemical reaction prediction problem , 2005 .

[23]  Patrick Bultinck,et al.  High-speed calculation of AIM charges through the electronegativity equalization method , 2004 .

[24]  R. Carbó-Dorca,et al.  A General Procedure to Obtain Quantum Mechanical Charge and Bond Order Molecular Parameters , 2004 .

[25]  R. Carbó-Dorca,et al.  Quantum Mechanical Basis for Mulliken Population Analysis , 2004 .

[26]  M. Solà,et al.  The hardness profile as a tool to detect spurious stationary points in the potential energy surface. , 2004, The Journal of chemical physics.

[27]  Alejandro Toro-Labbé,et al.  Condensation of Frontier Molecular Orbital Fukui Functions , 2004 .

[28]  R. Carbó-Dorca,et al.  Negative and Infinite Fukui Functions: The Role of Diagonal Dominance in the Hardness Matrix , 2003 .

[29]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[30]  R. Carbó-Dorca,et al.  Negative Fukui functions: New insights based on electronegativity equalization , 2003 .

[31]  R. Nalewajski Electronic Structure and Chemical Reactivity: Density Functional and Information-Theoretic Perspectives , 2003 .

[32]  E. Davidson,et al.  Population analyses that utilize projection operators , 2003 .

[33]  M. Solà,et al.  Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations , 2002 .

[34]  Wilfried Langenaeker,et al.  Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density , 2002, J. Comput. Chem..

[35]  Michel Waroquier,et al.  The Electronegativity Equalization Method I: Parametrization and Validation for Atomic Charge Calculations , 2002 .

[36]  Patrick Bultinck,et al.  The Electronegativity Equalization Method II: Applicability of Different Atomic Charge Schemes , 2002 .

[37]  T. Ramasami,et al.  Chemical reactivity and selectivity using Fukui functions: basis set and population scheme dependence in the framework of B3LYP theory , 2002 .

[38]  R. C. Morrison,et al.  Variational principles for describing chemical reactions: Condensed reactivity indices , 2002 .

[39]  C. Alsenoy,et al.  Condensed Fukui Functions Derived from Stockholder Charges: Assessment of Their Performance as Local Reactivity Descriptors , 2002 .

[40]  K. Hirao,et al.  Mulliken population analysis based evaluation of condensed Fukui function indices using fractional molecular charge , 2001 .

[41]  M. Solà,et al.  On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. , 2001, Journal of the American Chemical Society.

[42]  R. Parr,et al.  Information Theory Thermodynamics of Molecules and Their Hirshfeld Fragments , 2001 .

[43]  W. Schwarz Chemical bonding: state of the art in conceptual quantum chemistry An introduction , 2001 .

[44]  P. Ayers Atoms in molecules, an axiomatic approach. I. Maximum transferability , 2000 .

[45]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[46]  P. Fuentealba,et al.  On the condensed Fukui function , 2000 .

[47]  R. Parr,et al.  Information theory, atoms in molecules, and molecular similarity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Anik Peeters,et al.  Systematic study of the parameters determining stockholder charges , 2000 .

[49]  Yang,et al.  Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory , 2000, Physical review letters.

[50]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[51]  Robert G. Parr,et al.  Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .

[52]  P. Ayers,et al.  Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” , 2000 .

[53]  P. Fuentealba,et al.  A direct evaluation of regional Fukui functions in molecules , 1999 .

[54]  Sourav Pal,et al.  On non-negativity of Fukui function indices , 1999 .

[55]  R. Pearson Maximum Chemical and Physical Hardness , 1999 .

[56]  P. Geerlings,et al.  Fukui Functions from the Relaxed Kohn-Sham Orbitals , 1999 .

[57]  H. Chermette,et al.  Chemical reactivity indexes in density functional theory , 1999, J. Comput. Chem..

[58]  R. Balawender,et al.  Atomic Fukui function indices and local softness ab initio , 1998 .

[59]  H. Chermette,et al.  Reactivity Indices in Density Functional Theory: A New Evaluation of the Condensed Fukui Function by Numerical Integration , 1998 .

[60]  Chang-Sheng Wang,et al.  Atom−Bond Electronegativity Equalization Method. 1. Calculation of the Charge Distribution in Large Molecules , 1997 .

[61]  P. Senet Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness , 1997 .

[62]  Peter Itskowitz,et al.  Chemical Potential Equalization Principle: Direct Approach from Density Functional Theory , 1997 .

[63]  W. J. Orville-Thomas Atoms in Molecules — a Quantum Theory , 1996 .

[64]  Darrin M. York,et al.  A chemical potential equalization method for molecular simulations , 1996 .

[65]  L. Bartolotti,et al.  Visualizing properties of atomic and molecular systems. , 1995, Journal of molecular graphics.

[66]  M. V. Ganduglia-Pirovano,et al.  ELECTRONIC AND NUCLEAR CHEMICAL REACTIVITY , 1994 .

[67]  J. Cioslowski,et al.  Atomic Fukui indices from the topological theory of atoms in molecules applied to Hartree-Fock and correlated electron densities , 1993 .

[68]  Ernest R. Davidson,et al.  A test of the Hirshfeld definition of atomic charges and moments , 1992 .

[69]  P. Geerlings,et al.  Quantum-chemical study of the Fukui function as a reactivity index , 1991 .

[70]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[71]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[72]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[73]  R. Pearson Recent advances in the concept of hard and soft acids and bases , 1987 .

[74]  Weitao Yang,et al.  The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. , 1986, Journal of the American Chemical Society.

[75]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[76]  Renato Pucci,et al.  Electron density, Kohn−Sham frontier orbitals, and Fukui functions , 1984 .

[77]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[78]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[79]  K. Fukui,et al.  Role of frontier orbitals in chemical reactions. , 1982, Science.

[80]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[81]  R. Parr,et al.  On the geometric mean principle for electronegativity equalization , 1982 .

[82]  R. Bader,et al.  Quantum Topology: Theory of Molecular Structure and its Change , 1980 .

[83]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[84]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[85]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[86]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[87]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[88]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[89]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[90]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[91]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[92]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.