Registration of Mars remote sensing images under the crater constraint

Abstract Registration of Mars remote sensing images is vital to jointly exploit and integrate the data from various sensors and periods, which is difficult because the lack of textural information in Mars images. We proposed a RANSAC-based iterative method, under the crater constraint, for affine invariant feature matching. The novelty of this method is, in automatic way, to find an optimal threshold for this RANSAC-based iterations. With this proposed method, a computer-automated process is developed to identify the appropriate threshold of RANSAC when using the iterative affine invariant feature matching method. Furthermore, this threshold can maximize the retention of correct matches and the rejection of all incorrect matches. The experimental results demonstrate successful automatic registration of Mars remote sensing images.

[1]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[2]  Weiming Cheng,et al.  Automatic extraction of lunar impact craters from Chang’E-1 satellite photographs , 2012 .

[3]  Patrick Pinet,et al.  Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data , 2008 .

[4]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[5]  Tim R. McVicar,et al.  The impact of misregistration on SRTM and DEM image differences , 2008 .

[6]  G. Michael,et al.  Coordinate registration by automated crater recognition , 2003 .

[7]  Manchun Li,et al.  A new method for remote sensing image matching by integrating affine invariant feature extraction and RANSAC , 2012, 2010 3rd International Congress on Image and Signal Processing.

[8]  Pedro Pina,et al.  Crater Detection by a Boosting Approach , 2009, IEEE Geoscience and Remote Sensing Letters.

[9]  Damir Vučina,et al.  Test-field for evaluation of laboratory craters using a Crater Shape-based interpolation crater detection algorithm and comparison with Martian and Lunar impact craters. , 2012 .

[10]  Pedro Pina,et al.  Automatic Recognition of Impact Craters on the Surface of Mars , 2004, ICIAR.

[11]  Jan-Peter Muller,et al.  An assessment of surface matching for the automated co-registration of MOLA, HRSC and HiRISE DTMs , 2010 .

[12]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[13]  Sven Lončarić,et al.  GT-57633 catalogue of Martian impact craters developed for evaluation of crater detection algorithms , 2008 .

[14]  Pedro Pina,et al.  Impact Crater Recognition on Mars Based on a Probability Volume Created by Template Matching , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.

[17]  Wei Ding,et al.  Detection of Sub-Kilometer Craters in High Resolution Planetary Images Using Shape and Texture Features , 2012 .

[18]  J. Muller,et al.  Multi-resolution topographic data extraction from Martian stereo imagery , 2009 .

[19]  K. L. Mitchell,et al.  Automated Registration of MDIM with MOLA Tracks , 2001 .

[20]  Tomasz F. Stepinski,et al.  Automatic detection of sub-km craters in high resolution planetary images , 2009 .

[21]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[22]  Yongtian Wang,et al.  A completely affine invariant image-matching method based on perspective projection , 2011, Machine Vision and Applications.

[23]  Vincent Lepetit,et al.  Compact signatures for high-speed interest point description and matching , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Larry H. Matthies,et al.  Crater detection for autonomous landing on asteroids , 2001, Image Vis. Comput..

[25]  T. F. Stepinski,et al.  AUTOMATIC DETECTION OF SUB-KM CRATERS USING SHAPE AND TEXTURE INFORMATION. L. Bandeira , 2010 .

[26]  Laurent D. Cohen,et al.  Multiple Contour Finding and Perceptual Grouping as a Set of Energy Minimizing Paths , 2001, EMMCVPR.

[27]  Jeong-Woo Hong,et al.  Implementation of Martian virtual reality environment using very high-resolution stereo topographic data , 2012, Comput. Geosci..

[28]  Liang Cheng,et al.  Robust Affine Invariant Feature Extraction for Image Matching , 2008, IEEE Geoscience and Remote Sensing Letters.

[29]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[30]  J. Muller,et al.  HRSC on Mars Express - Photogrammetric and Cartographic Research , 2005 .

[31]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[32]  Derek M. Cunnold,et al.  Observations of 1,1‐difluoroethane (HFC‐152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates , 2007 .

[33]  C. Strecha,et al.  Wide-baseline stereo from multiple views: A probabilistic account , 2004, CVPR 2004.

[34]  Jon Atli Benediktsson,et al.  Automatic Extraction of Ellipsoidal Features for Planetary Image Registration , 2012, IEEE Geoscience and Remote Sensing Letters.

[35]  Kim,et al.  Impact crateer detection on optical images and DEMs , 2003 .

[36]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[37]  A. Kääb,et al.  Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation , 2011 .

[38]  J. Muller,et al.  Automated crater detection, a new tool for Mars cartography and chronology , 2005 .

[39]  David D. Nelson,et al.  Multi-angle geometric processing for globally geo-located and co-registered MISR image data , 2007 .

[40]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[41]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[42]  Sz. Berczi,et al.  Possible role of brines in the darkening and flow-like features on the Martian polar dunes based on HiRISE images , 2011 .

[43]  Sven Loncaric,et al.  Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data , 2008 .

[44]  Wei Ding,et al.  Semi-supervised based active class selection for automatic identification of sub-kilometer craters , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).

[45]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Laurent D. Cohen Multiple Contour Finding and Perceptual Grouping using Minimal Paths , 2004, Journal of Mathematical Imaging and Vision.

[47]  G. Schwarz,et al.  The High Resolution Stereo Camera (HRSC) , 1995 .

[48]  F. Wewel,et al.  High Resolution Stereo Camera (HRSC)-Multispectral 3D-Data Acquisition and Photogrammetric Data Processing , 2000 .

[49]  Jeffrey S. Kargel,et al.  Identification of cryovolcanism on Titan using fuzzy cognitive maps , 2010 .