The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint

[1]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .

[2]  J. Gibbs On the Fundamental Formulae of Dynamics , 1879 .

[3]  Journal de Mathématiques pures et appliquées , 1889 .

[4]  P. Appell Sur une forme générale des équations de la dynamique. , 1900 .

[5]  C. Lanczos The variational principles of mechanics , 1949 .

[6]  Shigeo Sasaki,et al.  ON THE DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS II , 1958 .

[7]  Hubert Goldschmidt,et al.  Integrability criteria for systems of nonlinear partial differential equations , 1967 .

[8]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .

[9]  S. Sternberg,et al.  The Hamilton-Cartan formalism in the calculus of variations , 1973 .

[10]  Robert Hermann,et al.  The differential geometric structure of general mechanical systems from the Lagrangian point of view , 1982 .

[11]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[12]  Thomas R. Kane,et al.  Formulation of dynamical equations of motion , 1983 .

[13]  E. A. Desloge,et al.  The Gibbs–Appell equations of motion , 1988 .

[14]  H. Farmer A new perspective. , 1988, The Journal of the Florida Medical Association.

[15]  D. Saunders The Geometry of Jet Bundles , 1989 .

[16]  G. Giachetta,et al.  Jet Methods in Nonholonomic Mechanics , 1992 .

[17]  P. C. Hughes,et al.  On the dynamics of Gibbs, Appell and Kane , 1992 .

[18]  M. A. Townsend Equivalence of Kane's, Gibbs-Appell's, and Lagrange's equations , 1992 .

[19]  R. Kalaba,et al.  A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  Firdaus E. Udwadia,et al.  Lagrangian mechanics, Gauss's principle, quadratic programming, and generalized inverses: new equations for nonholonomically constrained discrete mechanical systems , 1994 .

[21]  Andrew D. Lewis,et al.  Aspects of Geometric Mechanics and Control of Mechanical Systems , 1995 .

[22]  A. D. Lewis,et al.  Variational Principles for Constrained Systems: Theory and Experiment , 1995 .

[23]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .