Quantum Chemical Molecular Dynamics Simulation of the Plasma Etching Processes

Recently, we reported the successful development of a new accelerated quantum chemical molecular dynamics program "Colors", which is based on our original tight-binding theory. This methodology enables us to perform fast and accurate quantum chemical molecular dynamics simulations as compared to the conventional first principles molecular dynamics methods. In the present investigation, "Colors" program is used to simulate the bombardment of an energetic CF2 radical onto a SiO2 surface. Atomic bond populations were analyzed in order to clarify the bond-breaking and bond-formation processes during the bombardment. The results indicate that the bombardment of a CF2 radical with higher kinetic energy led to Si-O bond-breaking as well as to the formation of C-O and Si-F bonds. The results are in good agreement with experimental observations. Furthermore, it can also be deduced from this study that the novel accelerated quantum chemical molecular dynamics program is a very effective tool to clarify the chemical reaction dynamics during the plasma etching processes.