Moore's crystal ball: Device physics and technology past the 15nm generation

This paper will discuss advanced CMOS transistor architectures for the 15nm node and beyond. Transistor architectures such as ultra-thin body (UTB), FinFET (and related architectures such as Trigate, Omega-FET, Pi-FET), and nanowire device architectures will be compared and contrasted. Key technology challenges (such as mobility, resistance and capacitance) shared by all the architectures will be discussed in relation to recent research results. The impact of new transistor architectures on the progression of Moore's Law will be summarized.

[1]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[2]  J. Colinge Subthreshold slope of thin-film SOI MOSFET's , 1986, IEEE Electron Device Letters.

[3]  M. Fischetti,et al.  Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity , 2007 .

[4]  K. Rim,et al.  Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .

[5]  Jong-Tea Park,et al.  Pi-Gate SOI MOSFET , 2001, IEEE Electron Device Letters.

[6]  Moon J. Kim,et al.  Effects of Film Stress Modulation Using TiN Metal Gate on Stress Engineering and Its Impact on Device Characteristics in Metal Gate/High- $k$ Dielectric SOI FinFETs , 2008, IEEE Electron Device Letters.

[7]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[8]  J. Colinge Reduction of kink effect in thin-film SOI MOSFETs , 1988, IEEE Electron Device Letters.

[9]  Hyung-Kyu Lim,et al.  Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET's , 1983, IEEE Transactions on Electron Devices.

[10]  Fumio Horiguchi,et al.  Impact of surrounding gate transistor (SGT) for ultra-high-density LSI's , 1991 .

[11]  D. Hisamoto,et al.  Impact of the vertical SOI 'DELTA' structure on planar device technology , 1991 .

[12]  H. Huff Into The Nano Era , 2009 .

[13]  D. Hisamoto,et al.  A fully depleted lean-channel transistor (DELTA)-a novel vertical ultrathin SOI MOSFET , 1990, IEEE Electron Device Letters.

[14]  R. Kotlyar,et al.  Assessment of room-temperature phonon-limited mobility in gated silicon nanowires , 2004 .

[15]  Min Yang,et al.  CMOS circuit performance enhancement by surface orientation optimization , 2004 .

[16]  Chenming Hu,et al.  Ultrathin-body SOI MOSFET for deep-sub-tenth micron era , 2000, IEEE Electron Device Letters.

[17]  J. Colinge Transconductance of Silicon-on-insulator (SOI) MOSFET's , 1985, IEEE Electron Device Letters.

[18]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[19]  Kelin J. Kuhn,et al.  (Invited) Past, Present and Future: SiGe and CMOS Transistor Scaling , 2010, ECS Transactions.

[20]  M. D. Giles,et al.  Process Technology Variation , 2011, IEEE Transactions on Electron Devices.

[21]  Avik W. Ghosh,et al.  Theoretical investigation of surface roughness scattering in silicon nanowire transistors , 2005, cond-mat/0502538.

[22]  D. Monroe,et al.  Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs , 2000, IEEE Electron Device Letters.