A greedy random adaptive search procedure for the weighted maximal planar graph problem

The weighted maximal planar graph (WMPG) problem seeks to find a subgraph from a given weighted complete graph such that the subgraph is planar--it can be embedded on the plane without any arcs intersecting. The subgraph is maximal no additional arc can be added to the subgraph without destroying its planarity and it also has the maximal sum of arc weights. In this paper, the main objective is to develop, implement and empirically analyse a new greedy random adaptive search procedure (GRASP) to solve the WMPG problem. A dynamic strategy to update the restricted candidate list is proposed. An efficient data structure is developed for the Green&Al-Hakim (GH) construction heuristic. The data structure reduces the GH complexity from O(n3) to O(n2). The GH heuristic with the data structure is then integrated with advanced moves neighbourhood to develop an efficient GRASP implementation. Further, we investigate the behaviour of GRASP parameters in relation to the problem's characteristics. Finally, the developed algorithms are compared with the best-known procedures in the literature on a set of 100 test instances of sizes varying from 20 to 100 nodes.

[1]  M. Fischetti,et al.  A hybrid algorithm for finding thekth smallest ofn elements in O(n) time , 1988 .

[2]  Edward L. Mooney,et al.  Proximity-based adjacency determination for facility layout , 1997 .

[3]  D. I. Carson On O(p2) algorithms for planarization , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  David M. Levine,et al.  Statistics for Managers Using Microsoft® Excel , 1997 .

[5]  J W Giffin,et al.  Orthogonal Floorplans from Maximal Planar Graphs , 1990 .

[6]  Rafael Martí,et al.  GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization , 1999, INFORMS J. Comput..

[7]  Latif A. Al-Hakim Two graph-theoretic procedures for an improved solution to the facilities layout problem , 1991 .

[8]  Ibrahim H. Osman Preface: focused issue on applied meta-heuristics , 2003 .

[9]  Peter B. Gibbons,et al.  Facilities Layout Adjacency Determination: An Experimental Comparison of Three Graph Theoretic Heuristics , 1985, Oper. Res..

[10]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[11]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[12]  L. Al-Hakim A modified-procedure for converting a dual graph to a block layout , 1992 .

[13]  L R Foulds,et al.  Drawing a block plan from a REL chart with graph theory and a microcomputer , 1986 .

[14]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[15]  Ibrahim H. Osman,et al.  Local search algorithms for the maximal planar layout problem , 1995 .

[16]  James P. Kelly,et al.  Meta-Heuristics: An Overview , 1996 .

[17]  Shinichi Shimozono Finding Optimal Subgraphs by Local Search , 1997, Theor. Comput. Sci..

[18]  Bruno Simeone Fortran codes for network optimization , 1988 .

[19]  Celso C. Ribeiro,et al.  A GRASP for graph planarization , 1997, Networks.

[20]  J. Ross,et al.  Annotated bibliography. , 1994, AJNR. American journal of neuroradiology.

[21]  W. Domschke,et al.  Location and layout planning , 1997 .

[22]  Ibrahim H. Osman,et al.  Linear programming based meta-heuristics for the weighted maximal planar graph , 2002, J. Oper. Res. Soc..

[23]  G. Hogg,et al.  On constructing a block layout by graph theory , 1991 .

[24]  J. Leung A New Graph-Theoretic Heuristic for Facility Layout , 1992 .

[25]  Yeong-Dae Kim,et al.  Graph theoretic heuristics for unequal-sized facility layout problems , 1995 .

[26]  Peter Eades,et al.  An efficient heuristic for identifying a maximum weight planar subgraph , 1982 .

[27]  G. Wascher,et al.  A comparative evaluation of heuristics forthe adjacency problem in facility layout planning , 1997 .

[28]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[29]  J. W. Giffin,et al.  The Vertex Splitting Algorithm for facilities layout , 1997 .

[30]  S. G. Boswell TESSA—A new greedy heuristic for facilities layout planning , 1992 .

[31]  Samad Ahmadi,et al.  Greedy random adaptive memory programming search for the capacitated clustering problem , 2005, Eur. J. Oper. Res..

[32]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[33]  J. W. Giffin,et al.  On the worst case performance of TESSA , 1996 .

[34]  Gary L. Hogg,et al.  A review of graph theory application to the facilities layout problem , 1987 .

[35]  Rodney H. Green,et al.  A heuristic for facilities layout planning , 1985 .

[36]  Wolfgang Domschke,et al.  Location and layout planning: a survey , 1996 .

[37]  Fred Glover,et al.  Efficient facility layout planning in a maximally planar graph model , 1999 .

[38]  M. M. D. Hassan Discussion A note on ‘Similarity of a new greedy heuristic for facility layout by graph theory to an existing approach’ , 1994 .

[39]  Michael Jünger,et al.  A note on computing a maximal planar subgraph using PQ-trees , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[40]  Richard W. Eglese,et al.  Operational Research Tutorial Papers , 1990 .

[41]  Michael Jünger,et al.  Solving the Maximum Weight Planar Subgraph Problem by Branch-and-Cut , 1993 .

[42]  L. R. Foulds,et al.  A Strategy for Solving the Plant Layout Problem , 1976 .

[43]  C. Ribeiro,et al.  Essays and Surveys in Metaheuristics , 2002, Operations Research/Computer Science Interfaces Series.

[44]  Michael Jünger,et al.  Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.