Influence of the operating parameters over dry reforming of methane to syngas

[1]  A. Serrano-Lotina,et al.  Highly stable and active catalyst for hydrogen production from biogas , 2013 .

[2]  Antonio J. Martín,et al.  Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts , 2012 .

[3]  Jurka Batista,et al.  Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh–CeO2 catalyst , 2012 .

[4]  Ana María,et al.  Obtención de hidrógeno a partir de biogás mediante catalizadores derivados de hidrotalcita , 2012 .

[5]  C. Gennequin,et al.  CO2 reforming of CH4 over Co–Mg–Al mixed oxides prepared via hydrotalcite like precursors , 2011 .

[6]  A. Yoshida,et al.  Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni–Mg–Al oxides , 2011 .

[7]  Antonio J. Martín,et al.  Biogas reforming over La-NiMgAl catalysts derived from hydrotalcite-like structure: Influence of calcination temperature , 2011 .

[8]  Loreto Daza,et al.  Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors , 2011 .

[9]  S. Yaşyerli,et al.  Ru incorporated Ni–MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature , 2011 .

[10]  Wei Zhou,et al.  Biogas reforming for hydrogen production over a Ni–Co bimetallic catalyst: Effect of operating conditions , 2010 .

[11]  S. Tsang,et al.  Reforming of CH4 with CO2 over Rh/H‐Beta: Effect of Rhodium Dispersion on the Catalytic Activity and Coke Resistance , 2010 .

[12]  H. Arandiyan,et al.  Effects of Lanthanum Substitution by Strontium and Calcium in La-Ni-Al Perovskite Oxides in Dry Reforming of Methane , 2008 .

[13]  Pio Forzatti,et al.  Catalytic partial oxidation of methane over a 4% Rh/α-Al2O3 catalyst Part II: Role of CO2 reforming , 2008 .

[14]  B. Ernst,et al.  Beneficial effects of the use of a nickel membrane reactor for the dry reforming of methane: Comparison with thermodynamic predictions , 2007 .

[15]  Paloma Ferreira-Aparicio,et al.  Development of biogas reforming Ni-La-Al catalysts for fuel cells , 2007 .

[16]  M. Arai,et al.  Preparation and application of nickel-containing smectite-type clay materials for methane reforming with carbon dioxide , 2006 .

[17]  Xin Chen,et al.  A comprehensive comparison of CH4-CO2 reforming activities of NiO/Al2O3 catalysts under fixed- and fluidized-bed operations , 2005 .

[18]  V. Choudhary,et al.  Carbon-free dry reforming of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst , 2005 .

[19]  J. Ross Natural gas reforming and CO2 mitigation , 2005 .

[20]  X. Verykios Catalytic dry reforming of natural gas for the production of chemicals and hydrogen , 2003 .

[21]  J. Rostrup-Nielsen New aspects of syngas production and use , 2000 .

[22]  M. Bradford,et al.  CO2 Reforming of CH4 , 1999 .

[23]  V. Chang,et al.  CO2 reforming of methane to syngas: I: evaluation of hydrotalcite clay-derived catalysts , 1998 .

[24]  M. Bradford,et al.  Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity , 1996 .

[25]  M. Bradford,et al.  Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics , 1996 .

[26]  Gao Qing Lu,et al.  Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art , 1996 .

[27]  E. Ruckenstein,et al.  Carbon dioxide reforming of methane over nickel alkaline earth metal oxide catalysts , 1995 .

[28]  J. H. Edwards,et al.  The chemistry of methane reforming with carbon dioxide and its current and potential applications , 1995 .

[29]  A. Corma,et al.  Hydrotalcites as Base Catalysts: Influence of the Chemical Composition and Synthesis Conditions on the Dehydrogenation of Isopropanol , 1994 .

[30]  A. Gadalla,et al.  The role of catalyst support on the activity of nickel for reforming methane with CO2 , 1988 .