Linear difference equations with transition points

Two linearly independent asymptotic solutions are constructed for the second-order linear difference equation

[1]  Z. Wang,et al.  Uniform asymptotic expansion of $J_\nu(\nu a)$ via a difference equation , 2002, Numerische Mathematik.

[2]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[3]  Z. Wang,et al.  Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.

[4]  George D. Birkhoff,et al.  Analytic theory of singular difference equations , 1933 .

[5]  F. Olver Asymptotics and Special Functions , 1974 .

[6]  George D. Birkhoff,et al.  Formal theory of irregular linear difference equations , 1930 .

[7]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[8]  R. Wong,et al.  On the Asymptotics of the Meixner—Pollaczek Polynomials and Their Zeros , 2000 .

[9]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[10]  Stephanos Venakides,et al.  A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials , 2001 .

[11]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[12]  Walter Van Assche,et al.  Riemann-Hilbert Problems for Multiple Orthogonal Polynomials , 2001 .

[13]  R. Dingle,et al.  WKB methods for difference equations II , 1968 .

[14]  H. Li,et al.  Asymptotic expansions for second-order linear difference equations , 1992 .

[15]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[16]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[17]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[18]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[19]  T. Kriecherbauer,et al.  Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .

[20]  H. Li,et al.  Asymptotic expansions for second-order linear difference equations. II , 1992 .

[21]  W.-Y. QIU,et al.  Uniform Asymptotic Formula for Orthogonal Polynomials with Exponential Weight , 2000, SIAM J. Math. Anal..

[22]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .