Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach

Abstract Maximum power point of solar cells can be extracted by knowing the values of the electrical parameters. The validity of the obtained result depends on the accuracy of the model parameters. Hence, it is important to use a superior optimization technique to identify the optimal values of the parameters. Recently, a metaheuristic optimization algorithm, bird mating optimizer (BMO), has been devised which tries to metaphorically imitate the mating strategies of bird species. BMO employs several searching patterns to explore the region under consideration. This ability helps the algorithm to maintain the diversity and avoid premature convergence, and therefore, get close to the global solution. In this paper, the electrical parameters of a 57 mm diameter commercial (RTC France) silicon solar cell are identified using BMO. The optimal parameters are then used to extract the maximum power point of the system. The accuracy of the proposed parameter identification approach is compared with the results found by the other optimization techniques. Simulation results accentuate the superior potential of BMO algorithm.

[1]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[2]  Weidong Xiao,et al.  Real-Time Identification of Optimal Operating Points in Photovoltaic Power Systems , 2006, IEEE Transactions on Industrial Electronics.

[3]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[4]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[5]  Gayeon Kim,et al.  A novel two-mode MPPT control algorithm based on comparative study of existing algorithms , 2004 .

[6]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[7]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[8]  Mariano Sidrach-de-Cardona,et al.  Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies , 2007 .

[9]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[10]  Takehito Mitate,et al.  Modeling of an equivalent circuit for dye-sensitized solar cells , 2004 .

[11]  K. Ebihara,et al.  Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system , 2001 .

[12]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[13]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[14]  M. Wolf,et al.  Investigation of the double exponential in the current—Voltage characteristics of silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[15]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[16]  H. Beyer,et al.  Mapping the performance of PV modules, effects of module type and data averaging , 2010 .

[17]  Alireza Rezazadeh,et al.  A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer , 2013 .

[18]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[19]  N. H. Helwa,et al.  Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks , 2004 .

[20]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[21]  Alireza Rezazadeh,et al.  Artificial neural network training using a new efficient optimization algorithm , 2013, Appl. Soft Comput..

[22]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .