The weak gravity conjecture, overcharged shells and gravitational traps

The Weak Gravity Conjecture predicts that in quantum gravity there should exist overcharged states, that is states with charge larger than their mass. Extending this to large masses and charges, we are expecting similar overcharged classical solutions. This has been demonstrated in higher-derivative extensions of General Relativity. In this paper we investigate the existence of overcharged solutions in General Relativity. We study the dynamics of a thin shell of mass $m$ and charge $Q$ under the action of its own gravitational and $U(1)$ fields. We show that shells with surface energy $\sigma$ and pressure $P$ obeying $P=w\sigma$ with $0\leq w\leq 1$ are necessarily undercharged $m\geq |Q|$ and always collapse to form Reissner-Nordstr\"om black holes. Nevertheless, if $-1\leq w<0$, we find that overcharged $m\leq |Q|$ shells exist, which however, are inevitably stabilized at finite radial distance.

[1]  J. Lemos,et al.  Electrically charged spherical matter shells in higher dimensions: Entropy, thermodynamic stability, and the black hole limit , 2022, Physical Review D.

[2]  V. Van Hemelryck,et al.  Over-extremal brane shells from string theory? , 2022, Classical and Quantum Gravity.

[3]  L. Perivolaropoulos,et al.  Stabilizing spherical energy shells with angular momentum in gravitational backgrounds , 2022, International Journal of Modern Physics D.

[4]  S. Bergliaffa,et al.  Thermodynamical and dynamical stability of a self-gravitating charged thin shell , 2022, The European Physical Journal C.

[5]  Tom Rudelius,et al.  Weak gravity conjecture , 2022, Reviews of Modern Physics.

[6]  M. Sharif,et al.  Stability of charged thin-shell and thin-shell wormholes: a comparison , 2021 .

[7]  E. Poisson,et al.  Equilibrium and stability of thin spherical shells in Newtonian and relativistic gravity , 2019, American Journal of Physics.

[8]  S. Bhagwat,et al.  Analytical model for gravitational-wave echoes from spinning remnants , 2019, Physical Review D.

[9]  E. Palti,et al.  The Swampland: Introduction and Review , 2019, Fortschritte der Physik.

[10]  G. Horowitz,et al.  Further evidence for the weak gravity — cosmic censorship connection , 2019, Journal of High Energy Physics.

[11]  N. Afshordi,et al.  Black hole echology: The observer’s manual , 2018, Physical Review D.

[12]  K. Kokkotas,et al.  Wormhole potentials and throats from quasi-normal modes , 2018, 1802.08525.

[13]  G. Horowitz,et al.  Testing the Weak Gravity - Cosmic Censorship Connection , 2017, 1709.07880.

[14]  K. Kokkotas,et al.  Parameter estimation of gravitational wave echoes from exotic compact objects , 2017, 1708.02217.

[15]  K. Kokkotas,et al.  Ultra compact stars: reconstructing the perturbation potential , 2017, 1704.07517.

[16]  K. Kokkotas,et al.  A semi-analytic study of axial perturbations of ultra compact stars , 2017, 1703.08156.

[17]  N. Afshordi,et al.  Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons , 2016, 1612.00266.

[18]  Vitor Cardoso,et al.  Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.

[19]  L. Motl,et al.  Higher-order corrections to mass-charge relation of extremal black holes , 2006, hep-th/0606100.

[20]  L. Motl,et al.  The String landscape, black holes and gravity as the weakest force , 2006, hep-th/0601001.

[21]  C. Vafa The String Landscape and the Swampland , 2005, hep-th/0509212.

[22]  E. Berti,et al.  Quasinormal modes of Reissner-Nordstrom-anti-de Sitter black holes: Scalar, electromagnetic and gravitational perturbations , 2003, gr-qc/0301052.

[23]  P. Mazur,et al.  Gravitational Condensate Stars: An Alternative to Black Holes , 2001, Universe.

[24]  K.D.Kokkotas,et al.  Scattering of particles by neutron stars: Time-evolutions for axial perturbations , 2000, gr-qc/0008057.

[25]  K. Maeda,et al.  Gravitational Waves from a Test Particle Scattered by a Neutron Star : Axial Mode Case , 1999, gr-qc/9901040.

[26]  V. Hubeny Overcharging a black hole and cosmic censorship , 1998, gr-qc/9808043.

[27]  K. Kokkotas Pulsating relativistic stars , 1996, gr-qc/9603024.

[28]  K. Kokkotas Axial Modes for Relativistic Stars , 1994 .

[29]  P. Bhatia Non-radial oscillations of a star , 1990 .

[30]  I. Moss,et al.  Stability of black holes in de Sitter space. , 1990, Physical review. D, Particles and fields.

[31]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[32]  J. Chase Gravitational instability and collapse of charged fluid shells , 1970 .

[33]  K. Kuchař Charged shells in general relativity and their gravitational collapse , 1968 .