Direction selectivity in the retina

[1]  Frank S. Werblin,et al.  Starburst Cells Initiate Directional Selective Responses in Rabbit Retina , 2002 .

[2]  F. Werblin,et al.  Directionally Selective Ganglion Cells Receive Directionally Selective Excitatory and Inhibitory Input , 2002 .

[3]  M. Tachibana,et al.  A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement , 2001, Neuron.

[4]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[5]  W. Levick,et al.  Dendritic computation of direction selectivity by retinal ganglion cells. , 2000, Science.

[6]  D. Pow,et al.  The dendritic architecture of the cholinergic plexus in the rabbit retina: Selective labeling by glycine accumulation in the presence of sarcosine , 2000, The Journal of comparative neurology.

[7]  P. Detwiler,et al.  Optical recording of light-evoked calcium signals in the functionally intact retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  F. Amthor,et al.  Complementary roles of two excitatory pathways in retinal directional selectivity , 1998, Visual Neuroscience.

[9]  Richard H. Masland,et al.  Retinal direction selectivity after targeted laser ablation of starburst amacrine cells , 1997, Nature.

[10]  S. Massey,et al.  Pharmacology of directionally selective ganglion cells in the rabbit retina. , 1997, Journal of neurophysiology.

[11]  N M Grzywacz,et al.  Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit's retinal directional selectivity? , 1997, Visual Neuroscience.

[12]  N M Grzywacz,et al.  Extra-receptive-field motion facilitation in on-off directionally selective ganglion cells of the rabbit retina , 1996, Visual Neuroscience.

[13]  F. Amthor,et al.  Spatial organization of retinal information about the direction of image motion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[14]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  N M Grzywacz,et al.  Inhibition in ON-OFF directionally selective ganglion cells of the rabbit retina. , 1993, Journal of neurophysiology.

[16]  Idan Segev Single neurone models: oversimple, complex and reduced , 1992, Trends in Neurosciences.

[17]  E. V. Famiglietti,et al.  Dendritic Co‐stratification of ON and ON‐OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina , 1992, The Journal of comparative neurology.

[18]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[20]  N. Grzywacz,et al.  A model of the directional selectivity circuit in retina: transformations by neurons singly and in concert , 1992 .

[21]  E. V. Famiglietti,et al.  Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction , 1991, The Journal of comparative neurology.

[22]  F. Werblin Synaptic connections, receptive fields, and patterns of activity in the tiger salamander retina. A simulation of patterns of activity formed at each cellular level from photoreceptors to ganglion cells [the Friendenwald lecture]. , 1991, Investigative ophthalmology & visual science.

[23]  Neville N. Osborne,et al.  Neurobiology of the Inner Retina , 1989, NATO ASI Series.

[24]  H. Wässle,et al.  Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Young,et al.  GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina , 1988, Brain Research.

[26]  R H Masland,et al.  Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  R H Masland,et al.  The shape and arrangement of the cholinergic neurons in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  F. Amthor,et al.  Morphology of on-off direction-selective ganglion cells in the rabbit retina , 1984, Brain Research.

[29]  D. I. Vaney,et al.  ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  E. V. Famiglietti,et al.  ‘Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric ON and OFF amacrine cells of rabbit retina , 1983, Brain Research.

[31]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  M. Ariel,et al.  Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells , 1982, The Journal of physiology.

[33]  B. Boycott,et al.  Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina , 1981, The Journal of comparative neurology.

[34]  J. Mills,et al.  Acetylcholine synthesis by displaced amacrine cells. , 1980, Science.

[35]  V. Perry,et al.  Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  J. Caldwell,et al.  Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. , 1978, The Journal of physiology.

[38]  R H Masland,et al.  Responses to acetylcholine of ganglion cells in an isolated mammalian retina. , 1976, Journal of neurophysiology.

[39]  H. J. Wyatt,et al.  Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. , 1976, Science.

[40]  N. Daw,et al.  Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. , 1975, Journal of neurophysiology.

[41]  H B Barlow,et al.  Direction-Selective Units in Rabbit Retina: Distribution of Preferred Directions , 1967, Science.

[42]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[43]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[44]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[45]  W. R. Levick,et al.  Direction-Selective Ganglion Cells in the Retina , 2001 .

[46]  J. Zanker,et al.  Motion vision : computational, neural, and ecological constraints , 2001 .

[47]  R. Masland,et al.  Responses to light of starburst amacrine cells. , 1996, Journal of neurophysiology.

[48]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[49]  Shaun P. Collin,et al.  Dendritic Relationships between Cholinergic Amacrine Cells and Direction-Selective Retinal Ganglion Cells , 1989 .