Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction.

[1]  M. Yaniv,et al.  Structural and mutational analysis of E2 trans‐activating proteins of papillomaviruses reveals three distinct functional domains. , 1988, The EMBO journal.

[2]  M. Botchan,et al.  Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. , 1990, Science.

[3]  S. V. Vande Pol,et al.  Repression of bovine papillomavirus type 1 transcription by the E1 replication protein , 1993, Journal of virology.

[4]  M. Yaniv,et al.  The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2 , 1994, Journal of virology.

[5]  D. Pim,et al.  Characterization of the human papillomavirus E2 protein: evidence of trans‐activation and trans‐repression in cervical keratinocytes. , 1994, The EMBO journal.

[6]  M. Botchan,et al.  The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  U. Hübscher,et al.  DNA polymerase delta holoenzyme: action on single-stranded DNA and on double-stranded DNA in the presence of replicative DNA helicases. , 1995, Biochemistry.

[8]  A. Stenlund,et al.  Cellular factors required for papillomavirus DNA replication , 1995, Journal of virology.

[9]  L. Banks,et al.  Mutations in the human papillomavirus type 16 E2 protein identify multiple regions of the protein involved in binding to E1. , 1995, The Journal of general virology.

[10]  L. Banks,et al.  Mutations in the human papillomavirus type 16 E2 protein identify a region of the protein involved in binding to E1 protein. , 1995, The Journal of general virology.

[11]  J. D. Benson,et al.  Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions , 1996, Journal of virology.

[12]  G. Steger,et al.  Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein , 1997, Journal of virology.

[13]  J. D. Benson,et al.  Two classes of human papillomavirus type 16 E1 mutants suggest pleiotropic conformational constraints affecting E1 multimerization, E2 interaction, and interaction with cellular proteins , 1997, Journal of virology.

[14]  M. Yaniv,et al.  The human papillomavirus type 18 (HPV18) replication protein E1 is a transcriptional activator when interacting with HPV18 E2. , 1998, Virology.

[15]  A. McBride,et al.  Transient Viral DNA Replication and Repression of Viral Transcription Are Supported by the C-Terminal Domain of the Bovine Papillomavirus Type 1 E1 Protein , 1998, Journal of Virology.

[16]  M. Stanley,et al.  A C-Terminal Helicase Domain of the Human Papillomavirus E1 Protein Binds E2 and the DNA Polymerase α-Primase p68 Subunit , 1998, Journal of Virology.

[17]  Keith W. Vance,et al.  An Enhanced Epithelial Response of a Papillomavirus Promoter to Transcriptional Activators* , 1999, The Journal of Biological Chemistry.

[18]  L. Chow,et al.  Human Papillomavirus DNA Replication , 1999, The Journal of Biological Chemistry.

[19]  J. Peto,et al.  Human papillomavirus is a necessary cause of invasive cervical cancer worldwide , 1999, The Journal of pathology.

[20]  E. Androphy,et al.  AMF-1/Gps2 Binds p300 and Enhances Its Interaction with Papillomavirus E2 Proteins , 2000, Journal of Virology.

[21]  M. Botchan,et al.  The bovine papillomavirus E2 transactivator is stimulated by the E1 initiator through the E2 activation domain. , 2000, Virology.

[22]  V. Wilson,et al.  Bovine Papillomavirus E1 Protein Is Sumoylated by the Host Cell Ubc9 Protein* , 2000, The Journal of Biological Chemistry.

[23]  A. McBride,et al.  Proteasome-Mediated Degradation of the Papillomavirus E2-TA Protein Is Regulated by Phosphorylation and Can Modulate Viral Genome Copy Number , 2000, Journal of Virology.

[24]  C. Demeret,et al.  Stability of the Human Papillomavirus Type 18 E2 Protein Is Regulated by a Proteasome Degradation Pathway through Its Amino-Terminal Transactivation Domain , 2001, Journal of Virology.

[25]  K. Yamane,et al.  A Functional Interaction between the Human Papillomavirus 16 Transcription/Replication Factor E2 and the DNA Damage Response Protein TopBP1* , 2002, The Journal of Biological Chemistry.

[26]  M. Plummer,et al.  Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis , 2003, British Journal of Cancer.

[27]  E. Taylor,et al.  UVB irradiation reduces the half-life and transactivation potential of the human papillomavirus 16 E2 protein , 2003, Oncogene.

[28]  Shwu‐Yuan Wu,et al.  Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Howley,et al.  Interaction of the Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic Chromosomes , 2004, Cell.

[30]  Y. Loo,et al.  Recruitment of Replication Protein A by the Papillomavirus E1 Protein and Modulation by Single-Stranded DNA , 2004, Journal of Virology.

[31]  R. Everett,et al.  Human papillomavirus 16 L2 inhibits the transcriptional activation function, but not the DNA replication function, of HPV-16 E2. , 2005, Virus research.

[32]  L. Banks,et al.  Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein , 2005, Oncogene.

[33]  K. Ozato,et al.  The Mitotic Chromosome Binding Activity of the Papillomavirus E2 Protein Correlates with Interaction with the Cellular Chromosomal Protein, Brd4 , 2005, Journal of Virology.

[34]  Shwu‐Yuan Wu,et al.  Dynamic Localization of the Human Papillomavirus Type 11 Origin Binding Protein E2 through Mitosis While in Association with the Spindle Apparatus , 2006, Journal of Virology.

[35]  John C. Fisk,et al.  Papillomavirus E1 Protein Binds to and Stimulates Human Topoisomerase I , 2006, Journal of Virology.

[36]  E. Androphy,et al.  ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. , 2006, Molecular cell.

[37]  E. Androphy,et al.  Interaction of Papillomavirus E2 Protein with the Brm Chromatin Remodeling Complex Leads to Enhanced Transcriptional Activation , 2006, Journal of Virology.

[38]  M. Ustav,et al.  Genomic instability of the host cell induced by the human papillomavirus replication machinery , 2007, The EMBO journal.

[39]  M. Donaldson,et al.  TopBP1 Regulates Human Papillomavirus Type 16 E2 Interaction with Chromatin , 2007, Journal of Virology.

[40]  A. McBride Replication and partitioning of papillomavirus genomes. , 2008, Advances in virus research.

[41]  V. Wilson,et al.  Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs). , 2008, Virology.

[42]  E. Androphy,et al.  Tax1BP1 Interacts with Papillomavirus E2 and Regulates E2-Dependent Transcription and Stability , 2008, Journal of Virology.

[43]  A. Poddar,et al.  The Human Papillomavirus Type 8 E2 Tethering Protein Targets the Ribosomal DNA Loci of Host Mitotic Chromosomes , 2008, Journal of Virology.

[44]  C. Johansson,et al.  The human papillomavirus 16 E2 protein is stabilised in S phase. , 2009, Virology.

[45]  P. Howley,et al.  Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9. , 2009, Virology.

[46]  P. Howley,et al.  Characterization of papillomavirus E 1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc 9 , 2009 .

[47]  P. McIntosh,et al.  A novel interaction between the human papillomavirus type 16 E2 and E1--E4 proteins leads to stabilization of E2. , 2009, Virology.

[48]  V. Wilson,et al.  Host cell sumoylation level influences papillomavirus E2 protein stability. , 2009, Virology.

[49]  Jennifer A. Smith,et al.  Brd4 Regulation of Papillomavirus Protein E2 Stability , 2009, Journal of Virology.

[50]  J. Archambault,et al.  Proteasomal Degradation of the Papillomavirus E2 Protein Is Inhibited by Overexpression of Bromodomain-Containing Protein 4 , 2009, Journal of Virology.

[51]  C. Chiang,et al.  Chromatin Adaptor Brd4 Modulates E2 Transcription Activity and Protein Stability* , 2009, Journal of Biological Chemistry.

[52]  M. Donaldson,et al.  Human papillomavirus E1 and E2 mediated DNA replication is not arrested by DNA damage signalling. , 2010, Virology.

[53]  P. Howley,et al.  E 2 polypeptides encoded by bovine papillomavirus type 1 form dimers through the common carboxyl-terminal domain : Transactivation is mediated by the conserved amino-terminal domain ( transcriptional regulation / DNA-protein interaction ) , 2022 .