Acyclic automata and small expressions using multi-tilde-bar operators

A regular expression with n occurrences of symbol can be converted into an equivalent automaton with (n+1) states, the so-called Glushkov automaton of the expression. Conversely, it is possible to decide whether a given (n+1)-state automaton is a Glushkov one and, if so, to convert it back to an equivalent regular expression of width n. Our goal is to extend the class of automata for which such a linear retranslation is possible. We define new regular operators, called multi-tilde-bars, allowing us to simultaneously apply a multi-tilde operator and a multi-bar one to a list of expressions. The main results are that a multi-tilde-bar expression of width n can be converted into an (n+1)-state position-like automaton and that any acyclic n-state automaton can be turned into an extended expression of width O(n).

[1]  Edward J. McCluskey,et al.  Signal Flow Graph Techniques for Sequential Circuit State Diagrams , 1963, IEEE Trans. Electron. Comput..

[2]  Shou-Feng Wang,et al.  𝒫𝒮-regular languages , 2011, Int. J. Comput. Math..

[3]  Manuel Delgado,et al.  Approximation to the Smallest Regular Expression for a Given Regular Language , 2004, CIAA.

[4]  Derick Wood,et al.  Obtaining shorter regular expressions from finite-state automata , 2007, Theor. Comput. Sci..

[5]  Pascal Caron,et al.  Characterization of Glushkov automata , 2000, Theor. Comput. Sci..

[6]  Jeffrey Shallit,et al.  Regular Expressions: New Results and Open Problems , 2004, J. Autom. Lang. Comb..

[7]  Djelloul Ziadi,et al.  From C-Continuations to New Quadratic Algorithms for Automaton Synthesis , 2001, Int. J. Algebra Comput..

[8]  Pascal Caron,et al.  Multi-tilde Operators and Their Glushkov Automata , 2009, LATA.

[9]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[10]  M. W. Shields An Introduction to Automata Theory , 1988 .

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  Lucian Ilie,et al.  Follow automata , 2003, Inf. Comput..

[13]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[14]  Djelloul Ziadi Regular Expression for a Language without Empty Word , 1996, Theor. Comput. Sci..

[15]  Pascal Caron,et al.  A New Family of Regular Operators Fitting with the Position Automaton Computation , 2009, SOFSEM.

[16]  Markus Holzer,et al.  Finite Automata, Digraph Connectivity, and Regular Expression Size , 2008, ICALP.

[17]  Markus Holzer,et al.  Language Operations with Regular Expressions of Polynomial Size , 2008, DCFS.

[18]  Frank Neven,et al.  Succinctness of the Complement and Intersection of Regular Expressions , 2008, TOCL.