Mechanism-Based and Input-Output Modeling of the Key Neuronal Connections and Signal Transformations in the CA3-CA1 Regions of the Hippocampus

This letter examines the results of input-output (nonparametric) modeling based on the analysis of data generated by a mechanism-based (parametric) model of CA3-CA1 neuronal connections in the hippocampus. The motivation is to obtain biological insight into the interpretation of such input-output (Volterra-equivalent) models estimated from synthetic data. The insights obtained may be subsequently used to interpretat input-output models extracted from actual experimental data. Specifically, we found that a simplified parametric model may serve as a useful tool to study the signal transformations in the hippocampal CA3-CA1 regions. Input-output modeling of model-based synthetic data show that GABAergic interneurons are responsible for regulating neuronal excitation, controlling the precision of spike timing, and maintaining network oscillations, in a manner consistent with previous studies. The input-output model obtained from real data exhibits intriguing similarities with its synthetic-data counterpart, demonstrating the importance of a dynamic resonance in the system/model response around 2 Hz to 3 Hz. Using the input-output model from real data as a guide, we may be able to amend the parametric model by incorporating more mechanisms in order to yield better-matching input-output model. The approach we present can also be applied to the study of other neural systems and pathways.

[1]  V.Z. Marmarelis,et al.  Modeling of neural systems by use of neuronal modes , 1993, IEEE Transactions on Biomedical Engineering.

[2]  Vasilis Z. Marmarelis,et al.  Nonlinear Dynamic Modeling of Physiological Systems , 2004 .

[3]  M. Häusser,et al.  Differential shunting of EPSPs by action potentials. , 2001, Science.

[4]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[5]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[6]  J. Kauer,et al.  Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity , 1997, Neuron.

[7]  D. Coulter,et al.  Massive and Specific Dysregulation of Direct Cortical Input to the Hippocampus in Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[8]  Dimitri M Kullmann,et al.  Interneuron networks in the hippocampus , 2011, Current Opinion in Neurobiology.

[9]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[10]  G. Buzsáki,et al.  Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity , 2001, Neuroscience.

[11]  A. Hodgkin,et al.  Propagation of electrical signals along giant nerve fibres , 1952, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[13]  Rosa H. M. Chan,et al.  A Nonlinear Model for Hippocampal Cognitive Prosthesis: Memory Facilitation by Hippocampal Ensemble Stimulation , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[14]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[15]  Robert E. Hampson,et al.  Nonlinear Dynamic Modeling of Spike Train Transformations for Hippocampal-Cortical Prostheses , 2007, IEEE Transactions on Biomedical Engineering.

[16]  T. Freund,et al.  Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine‐induced seizures , 2003, The Journal of comparative neurology.

[17]  Jean-Marie C. Bouteiller,et al.  Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study , 2015, PloS one.

[18]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[19]  Menno P. Witter,et al.  A pathophysiological framework of hippocampal dysfunction in ageing and disease , 2011, Nature Reviews Neuroscience.

[20]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[21]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[22]  Kunling Geng,et al.  Pattern recognition of Hodgkin-Huxley equations by auto-regressive Laguerre Volterra network , 2015, BMC Neuroscience.

[23]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[24]  Dong Song,et al.  Hippocampal closed-loop modeling and implications for seizure stimulation design , 2015, Journal of neural engineering.

[25]  Robert E. Hampson,et al.  Sparse Large-Scale Nonlinear Dynamical Modeling of Human Hippocampus for Memory Prostheses , 2018, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[26]  Vasilis Z. Marmarelis,et al.  Methodology of Recurrent Laguerre–Volterra Network for Modeling Nonlinear Dynamic Systems , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[27]  Nancy Kopell,et al.  Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits , 2010 .

[28]  Arne D. Ekstrom,et al.  A comparative study of human and rat hippocampal low‐frequency oscillations during spatial navigation , 2013, Hippocampus.

[29]  Robert E. Hampson,et al.  Manuscript Information Manuscript Files on Parsing the Neural Code in the Prefrontal Cortex of Primates Using Principal Dynamic Modes on Parsing the Neural Code in the Prefrontal Cortex of Primates Using Principal Dynamic Modes , 2022 .

[30]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[31]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[32]  Theodore W. Berger,et al.  Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study , 2009, Journal of Computational Neuroscience.

[33]  Theodoros P. Zanos,et al.  Nonlinear Modeling of Causal Interrelationships in Neuronal Ensembles , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[34]  Giorgio A. Ascoli,et al.  Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons , 2015, Front. Cell. Neurosci..

[35]  M. Kahana,et al.  Human hippocampal theta oscillations and the formation of episodic memories , 2012, Hippocampus.

[36]  R. Quiroga Concept cells: the building blocks of declarative memory functions , 2012, Nature Reviews Neuroscience.

[37]  Theodore W. Berger,et al.  Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations , 2015, Front. Comput. Neurosci..

[38]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[39]  Jeanne T Paz,et al.  Microcircuits and their interactions in epilepsy: is the focus out of focus? , 2015, Nature Neuroscience.

[40]  S. D. Berry,et al.  Prediction of learning rate from the hippocampal electroencephalogram. , 1978, Science.

[41]  Dieter Jaeger,et al.  The Contribution of NMDA and AMPA Conductances to the Control of Spiking in Neurons of the Deep Cerebellar Nuclei , 2003, The Journal of Neuroscience.

[42]  Bing J. Sheu,et al.  Brain-implantable biomimetic electronics as the next era in neural prosthetics , 2001, Proc. IEEE.

[43]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[44]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[45]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[46]  R. Morris,et al.  Spatial learning with a minislab in the dorsal hippocampus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Tulving,et al.  Episodic and declarative memory: Role of the hippocampus , 1998, Hippocampus.

[48]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[49]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[50]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[51]  Robert E. Hampson,et al.  Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions , 2013, Journal of Computational Neuroscience.

[52]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[53]  Robert E. Hampson,et al.  Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes , 2012, Journal of Computational Neuroscience.

[54]  F. Y. Wu The Potts model , 1982 .

[55]  Bruce P. Graham,et al.  Hippocampal Microcircuits: A Computational Modeler's Resource Book , 2010, Springer Series in Computational Neuroscience.

[56]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[57]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[58]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[59]  J. Lisman,et al.  Pathway-Specific Properties of AMPA and NMDA-Mediated Transmission in CA1 Hippocampal Pyramidal Cells , 2002, The Journal of Neuroscience.

[60]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[61]  V. Marmarelis Modeling methology for nonlinear physiological systems , 1997, Annals of Biomedical Engineering.

[62]  Vasilis Z. Marmarelis,et al.  Nonlinear Dynamic Modeling of Physiological Systems: Marmarelis/Nonlinear , 2004 .

[63]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.

[64]  Vasilis Z. Marmarelis,et al.  Volterra models and three-layer perceptrons , 1997, IEEE Trans. Neural Networks.

[65]  M. Larkum,et al.  Modeling action potential initiation and back-propagation in dendrites of cultured rat motoneurons. , 1998, Journal of neurophysiology.

[66]  Robert E. Hampson,et al.  A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[67]  Yaghout Nourani,et al.  A comparison of simulated annealing cooling strategies , 1998 .

[68]  M. Larkum,et al.  Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. , 1996, Journal of neurophysiology.

[69]  C. Stevens,et al.  Excitatory and Feed-Forward Inhibitory Hippocampal Synapses Work Synergistically as an Adaptive Filter of Natural Spike Trains , 2006, PLoS biology.

[70]  D. Johnston,et al.  Active dendrites, potassium channels and synaptic plasticity. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  R. Miles,et al.  Interneurons, Spike Timing, and Perception , 2001, Neuron.

[72]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[73]  A. Saudargiene,et al.  A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus , 2015, Hippocampus.

[74]  Robert E. Hampson,et al.  Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus , 2014, Journal of Computational Neuroscience.

[75]  Dong Song,et al.  Contribution of NMDA receptor channels to the expression of LTP in the hippocampal dentate gyrus , 2002, Hippocampus.

[76]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[77]  Vassilis Cutsuridis,et al.  Encoding and retrieval in a model of the hippocampal CA1 microcircuit , 2009, Hippocampus.

[78]  J. Troncoso,et al.  Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease , 1994, The Lancet.

[79]  Ethan M. Goldberg,et al.  Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction , 2013, Nature Reviews Neuroscience.

[80]  Yehezkel Ben-Ari,et al.  Seizures Beget Seizures in Temporal Lobe Epilepsies: The Boomerang Effects of Newly Formed Aberrant Kainatergic Synapses , 2008, Epilepsy currents.

[81]  H. Robinson,et al.  Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. , 1999, Biophysical journal.

[82]  Astrid A. Prinz,et al.  Input-to-output transformation in a model of the rat hippocampal CA1 network , 2012, Front. Comput. Neurosci..

[83]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[84]  J. Jacobs Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[85]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[86]  P. Z. Marmarelis,et al.  Analysis of Physiological Systems: The White-Noise Approach , 2011 .

[87]  Alin Ciobica,et al.  Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer's disease patients. , 2012, Psychiatria Danubina.

[88]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[89]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[90]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[91]  Dae C. Shin,et al.  Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing , 2013, Journal of neural engineering.

[92]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[93]  C. Stevens,et al.  The Role of Presynaptic Dynamics in Processing of Natural Spike Trains in Hippocampal Synapses , 2010, The Journal of Neuroscience.

[94]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[95]  Afia B Ali,et al.  CB1 modulation of temporally distinct synaptic facilitation among local circuit interneurons mediated by N-type calcium channels in CA1. , 2011, Journal of neurophysiology.

[96]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[97]  W. Lytton,et al.  Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex. , 1997, Journal of neurophysiology.

[98]  Arne D. Ekstrom,et al.  Behavioral correlates of human hippocampal delta and theta oscillations during navigation. , 2011, Journal of neurophysiology.

[99]  Christina Müller,et al.  Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus , 2014, Front. Synaptic Neurosci..

[100]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.