A Recursive Method for Computing Zeta Functions of Varieties

We present a method for calculating the zeta function of a smooth projective variety over a finite field which proceeds by induction on the dimension. Specifically, we outline an algorithm which reduces the problem of calculating a numerical approximation for the action of Frobenius on the middle-dimensional rigid cohomology of a smooth variety, to that of performing the same calculation for a smooth hyperplane section. We present in detail the main new algorithmic ingredient under some simplifying assumptions, and give full details of our algorithm for calculating zeta functions for some specific surfaces; we call it the “fibration algorithm”. We have implemented the fibration algorithm for these surfaces over prime fields using the Magma programming language, and present some explicit examples which we have computed. To illustrate the main idea behind our approach, we begin by outlining the proof given by Deligne of the Riemann hypothesis for a smooth projective variety X over the finite field Fq [9]. Specifically, the statement that for each 0 ≤ i ≤ 2 dim(X) the action of the Frobenius endomorphism on the `-adic etale cohomology space H et(X,Q`) has eigenvalues of complex absolute value q. Let X ⊂ P be a smooth projective variety of dimension n + 1 > 1 defined over the finite field Fq. Denote by P the dual projective space whose points t correspond to hyperplanes Ht in P, and let D be a line in P. Let X ⊂ X ×D denote the set of points (x, t) such that x ∈ Ht. Projection on the first and second coordinates yields maps X π ← X f → D. The fibre of f at t ∈ D is the hyperplane section Xt = X ∩ Ht of X. For sufficiently general D these maps define a Lefschetz pencil [9, (5.1)] (one may need to change the projective embedding first [9, (5.7)]). The action of the Frobenius endomorphism on the `-adic etale cohomology H∗ et(X,Q`) may be studied via this Lefschetz pencil. In particular, assuming the result holds for smooth curves and arguing by induction on the dimension n+1,

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  D. N. Clark A note on the $p$-adic convergence of solutions of linear differential equations , 1966 .

[3]  Nicholas M. Katz,et al.  On the differentiation of De Rham cohomology classes with respect to parameters , 1968 .

[4]  Nicholas M. Katz,et al.  Nilpotent connections and the monodromy theorem: Applications of a result of turrittin , 1970 .

[5]  P. Deligne,et al.  Groupes de monodromie en geometrie algebrique , 1972 .

[6]  B. Mazur Frobenius and the Hodge filtration , 1972 .

[7]  P. Deligne La conjecture de Weil. I , 1974 .

[8]  A. Adolphson,et al.  An index theorem for $p$-adic differential operators , 1976 .

[9]  Nicholas M. Katz,et al.  An overview of Deligne''s proof of the Riemann hypothesis for varieties over finite fields , 1976 .

[10]  P. Berthelot Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$ , 1982 .

[11]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[12]  A. Klyachko,et al.  NEWTON POLYHEDRA AND AN ALGORITHM FOR COMPUTING HODGE?DELIGNE NUMBERS , 1987 .

[13]  J. Pila Frobenius maps of Abelian varieties and finding roots of unity in finite fields , 1990 .

[14]  B. Dwork,et al.  Effective $p$-adic bounds at regular singular points , 1991 .

[15]  Daqing Wan,et al.  Newton polygons of zeta functions and L functions , 1993 .

[16]  Jean-Yves Étesse,et al.  Fonctions L associées aux F-isocristaux surconvergents. I: Interprétation cohomologique , 1993 .

[17]  B. Chiarellotto,et al.  Algebraic versis Rigid Cohomology with Logarithmic Coefficients , 1994 .

[18]  Bernard Dwork,et al.  An introduction to G-functions , 1994 .

[19]  Pierre Berthelot,et al.  Finitude et pureté cohomologique en cohomologie rigide avec un appendice par Aise Johan de Jong , 1997 .

[20]  Minoru Setoyanagi Note on Clark’s theorem for -adic convergence , 1997 .

[21]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[22]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[23]  K. Kedlaya Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.

[24]  Finiteness of rigid cohomology with coefficients , 2002, math/0208027.

[25]  Kiran S. Kedlaya,et al.  Fourier transforms and p-adic "Weil II" , 2002 .

[26]  N. Tsuzuki On base change theorem and coherence in rigid cohomology. , 2003 .

[27]  Alan G. B. Lauder Counting Solutions to Equations in Many Variables over Finite Fields , 2004, Found. Comput. Math..

[28]  Kiran S. Kedlaya,et al.  Computing Zeta Functions via p-Adic Cohomology , 2004, ANTS.

[29]  Alan G. B. Lauder Rigid cohomology and $p$-adic point counting , 2005 .

[30]  Alan G. B. Lauder Rationality and meromorphy of zeta functions , 2005, Finite Fields Their Appl..

[31]  Alan G. B. Lauder,et al.  Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.

[32]  Bas Edixhoven,et al.  Point counting after Kedlaya, EIDMA-Stieltjes Graduate course, Leiden, September 22-26, 2003 , 2006 .

[33]  Kiran S. Kedlaya,et al.  Bounding Picard numbers of surfaces using p-adic cohomology , 2006 .

[34]  Bas Edixhoven,et al.  On the Computation of the Coefficients of a Modular Form , 2006, ANTS.

[35]  Hendrik Hubrechts,et al.  Point Counting in Families of Hyperelliptic Curves , 2006, Found. Comput. Math..