Fourier-Hermite Kalman Filter

In this note, we shall present a new class of Gaussian filters called Fourier-Hermite Kalman filters. Fourier-Hermite Kalman filters are based on expansion of nonlinear functions with the Fourier-Hermite series in same way as the traditional extended Kalman filter is based on the Taylor series. The first order truncation of the Fourier-Hermite series gives the previously known statistically linearized filter.

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[3]  Jean C. Walrand,et al.  Security in networks: A game-theoretic approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[4]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[5]  P. Barooah,et al.  Graph Effective Resistance and Distributed Control: Spectral Properties and Applications , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[6]  F. Hagen MOMENT EQUATIONS AND HERMITE EXPANSION FOR NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH APPLICATION TO STOCK PRICE MODELS , 2004 .

[7]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[8]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[9]  S Julier,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" - Reply , 2002 .

[10]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[11]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[12]  W. Marsden I and J , 2012 .

[13]  Mehran Mesbahi,et al.  Agreement over random networks , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[14]  J. L. Maryak,et al.  Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[15]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[16]  Ivan Gutman,et al.  THE PATH IS THE TREE WITH SMALLEST GREATEST LAPLACIAN EIGENVALUE , 2002 .

[17]  Michael Bloem,et al.  Optimal and robust epidemic response for multiple networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  B. Rozovskii,et al.  Fourier--Hermite Expansions for Nonlinear Filtering , 2000 .

[19]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[20]  Hermann Singer Generalized Gauss–Hermite filtering , 2008 .

[21]  J. Stoyanov The Oxford Handbook of Nonlinear Filtering , 2012 .

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[23]  C.N. Hadjicostis,et al.  Distributed function calculation via linear iterations in the presence of malicious agents — Part I: Attacking the network , 2008, 2008 American Control Conference.

[24]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[25]  David Q. Mayne,et al.  Conditional Markov Processes and their application to the Theory of Optimal Control , 1969, Comput. J..

[26]  J. L. Maryak,et al.  Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1996, IEEE Transactions on Automatic Control.

[27]  B. Rozovskii,et al.  Nonlinear Filtering Revisited: A Spectral Approach , 1997 .

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[30]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[31]  Josef Leydold,et al.  Algebraic Connectivity and Degree Sequences of Trees , 2008, 0810.0966.

[32]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[33]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[34]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[35]  Magnus Egerstedt,et al.  Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective , 2009, SIAM J. Control. Optim..

[36]  S. Graham,et al.  Time in general-purpose control systems: the Control Time Protocol and an experimental evaluation , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[37]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[38]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[39]  Hermann Singer,et al.  Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models , 2006, Comput. Stat..

[40]  Wuan Luo Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .

[41]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[42]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[43]  Subhash Challa,et al.  Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..

[44]  P. I. Kuznetsov,et al.  Quasi-Moment Functions in the Theory of Random Processes , 1960 .

[45]  Mehran Mesbahi,et al.  Semi-autonomous networks: Theory and decentralized protocols , 2010, 2010 IEEE International Conference on Robotics and Automation.

[46]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .