A new viewpoint on mixed elements
暂无分享,去创建一个
[1] J. N. Reddy,et al. On dual-complementary variational principles in mathematical physics , 1974 .
[2] P. Panagiotopoulos. Inequality problems in mechanics and applications , 1985 .
[3] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[4] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[5] M. L. Barton,et al. New vector finite elements for three‐dimensional magnetic field computation , 1987 .
[6] Alain Bossavit,et al. Simplicial finite elements for scattering problems in electromagnetism , 1989 .
[7] Wha Wil Schilders,et al. Semiconductor device modelling from the numerical point of view , 1987 .
[8] P. R. Kotiuga. Hodge decompositions and computational electromagnetics , 1985 .
[9] H. Whitney. Geometric Integration Theory , 1957 .
[10] I. Babuska. Error-bounds for finite element method , 1971 .
[11] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[12] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms , 1976 .
[13] Eric Reissner. Note on the Method of Complementary Energy , 1948 .
[14] J. Penman,et al. Dual and complementary energy methods in electromagnetism , 1983 .
[15] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[16] J.-C. Verite,et al. A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .
[17] Michel Fortin,et al. An analysis of the convergence of mixed finite element methods , 1977 .
[18] George L Allen,et al. Variational inequalities, complementarity problems, and duality theorems , 1977 .
[19] V. Barbu,et al. Convexity and optimization in banach spaces , 1972 .
[20] A. Tiero,et al. The geometry of linear heat conduction , 1991 .
[21] Enzo Tonti. On the Mathematical Structure of a Large Class of Physical Theories , 1971 .
[22] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[23] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[24] J. Moreau. Application of convex analysis to the treatment of elastoplastic systems , 1976 .
[25] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.