A new viewpoint on mixed elements

Mixed elements are special finite elements for vector fields, whose shape functions are not necessarily continuous in all their components. They are used in connection with ‘two-field’ formulations, for instance when one tries simultaneously to compute displacement and stress in elasticity. We present here a family of finite elements which originate from a chapter of differential geometry apparently unconnected with numerical analysis (Whitney forms) and insist on the structural properties of this family considered as a whole. This sheds a new light on mixed elements, under which they acquire a more natural character than in previous presentations.SommarioGli elementi misti sono elementi finiti speciali per campi vettoriali le cui funzioni di interpolazione non sono necessariamente continue in tutte le componenti; tali elementi vengono usati nell'ambito delle formulazioni ‘a due campi’, per esempio quando si calcolano simultaneamente spostamento e tensione in elasticità. In questo articolo viene presentata una famiglia di elementi finiti che traggono origine da un costrutto di geometria differenziale che in apparenza non ha alcun nesso con l'analisi numerica (le forme di Whitney): vengono illustrate le proprietà strutturali complessive di tale famiglia. Questa presentazione getta una nuova luce sugli elementi misti, sotto la quale essi acquistano un carattere più naturale.

[1]  J. N. Reddy,et al.  On dual-complementary variational principles in mathematical physics , 1974 .

[2]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[3]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[4]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[5]  M. L. Barton,et al.  New vector finite elements for three‐dimensional magnetic field computation , 1987 .

[6]  Alain Bossavit,et al.  Simplicial finite elements for scattering problems in electromagnetism , 1989 .

[7]  Wha Wil Schilders,et al.  Semiconductor device modelling from the numerical point of view , 1987 .

[8]  P. R. Kotiuga Hodge decompositions and computational electromagnetics , 1985 .

[9]  H. Whitney Geometric Integration Theory , 1957 .

[10]  I. Babuska Error-bounds for finite element method , 1971 .

[11]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[12]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[13]  Eric Reissner Note on the Method of Complementary Energy , 1948 .

[14]  J. Penman,et al.  Dual and complementary energy methods in electromagnetism , 1983 .

[15]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[16]  J.-C. Verite,et al.  A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .

[17]  Michel Fortin,et al.  An analysis of the convergence of mixed finite element methods , 1977 .

[18]  George L Allen,et al.  Variational inequalities, complementarity problems, and duality theorems , 1977 .

[19]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[20]  A. Tiero,et al.  The geometry of linear heat conduction , 1991 .

[21]  Enzo Tonti On the Mathematical Structure of a Large Class of Physical Theories , 1971 .

[22]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[23]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[24]  J. Moreau Application of convex analysis to the treatment of elastoplastic systems , 1976 .

[25]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.