Mathematical modeling of intercalation batteries at the cell level and beyond.

Mathematical modeling of lithium ion batteries is a key feature for a profound understanding of the whole spectrum of phenomena occurring in such electrochemical systems. Due to their inherent multi-scale nature, batteries cannot be described with a single equation. It is necessary to couple the physical chemistry, reaction kinetics, ion flow, heat generation, et cetera, appropriately to obtain a coupled set of equations (a model) which has predictive efficiency. To adapt ideas and expertise obtained in the field of modeling to future type of batteries, new electrode or electrolyte materials or to improve the model reliability, a universal basis is desirable. In this sense, we carefully derive the commonly used set of equations based on the most general form of linear non-equilibrium thermodynamics. Due to chemical and physical assumptions the set of equations is reduced to facilitate numerical computations. Transport equations for a general electrolyte are derived and different electroneutrality assumptions are applied to obtain Poisson-Nernst-Planck-type equations or a generalized Ohmic law. Electrodes are described with single and many particle models, e.g. for phase separating materials, and the transition to porous electrode theory is given. A mathematical treatment of the intercalation reaction is finally presented, based on surface charge densities and electrode potentials.

[1]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[2]  E. Maire,et al.  Finite element modelling of the actual structure of cellular materials determined by X-ray tomography , 2005 .

[3]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[4]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[5]  Jochen Zausch,et al.  Thermodynamic consistent transport theory of Li-ion batteries , 2011 .

[6]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[7]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[8]  E. Ivers-Tiffée,et al.  Detailed Microstructure Analysis and 3D Simulations of Porous Electrodes , 2011 .

[9]  P. Pulay,et al.  Efficient geometry optimization of molecular clusters , 2000, J. Comput. Chem..

[10]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[11]  J. Newman,et al.  A Flow‐Through Porous Electrode Model: Application to Metal‐Ion Removal from Dilute Streams , 1977 .

[12]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[13]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[14]  Keld West,et al.  Modeling of Porous Insertion Electrodes with Liquid Electrolyte , 1982 .

[15]  Yuang-Shung Lee,et al.  Intelligent control battery equalization for series connected lithium-ion battery strings , 2005, IEEE Trans. Ind. Electron..

[16]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[17]  O. Borodin,et al.  A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes. , 2009, Physical chemistry chemical physics : PCCP.

[18]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Binder,et al.  Mobility, interdiffusion, and tracer diffusion in lattice-gas models of two-component alloys. , 1989, Physical review. B, Condensed matter.

[20]  B. Davat,et al.  Energetical Modeling of Lithium-Ion Batteries Including Electrode Porosity Effects , 2010, IEEE Transactions on Energy Conversion.

[21]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[22]  Wolfgang Dreyer,et al.  Phase transition in a rechargeable lithium battery , 2011, European Journal of Applied Mathematics.

[23]  Wei Lai,et al.  Mathematical Modeling of Porous Battery Electrodes-Revisit of Newman's Model , 2011 .

[24]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[25]  A. Kornyshev,et al.  Nonlinear Poisson-Boltzmann theory of a double layer at a rough metal/electrolyte interface: A new look at the capacitance data on solid electrodes , 1998 .

[26]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[27]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[28]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[29]  B. Damaskin,et al.  The notion of the electrode charge and the Lippmann equation , 1970 .

[30]  Stefan Funken,et al.  An advanced model framework for solid electrolyte intercalation batteries. , 2011, Physical chemistry chemical physics : PCCP.

[31]  Min Chen,et al.  Accurate electrical battery model capable of predicting runtime and I-V performance , 2006, IEEE Transactions on Energy Conversion.

[32]  Phl Peter Notten,et al.  Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries , 2008 .

[33]  M. Landstorfer,et al.  A Mathematical Model for All Solid-State Lithium-Ion Batteries , 2010 .

[34]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[35]  Moses Ender,et al.  Three-dimensional reconstruction of a composite cathode for lithium-ion cells , 2011 .

[36]  John Newman,et al.  Desalting by Means of Porous Carbon Electrodes , 1971 .

[37]  Martin Z. Bazant,et al.  Imposed currents in galvanic cells , 2009 .

[38]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[39]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[40]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[41]  J. Maier,et al.  Current Equation for Hopping Ions on a Lattice under High Driving Force and Nondilute Concentration , 2009 .

[42]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[43]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[44]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[45]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[46]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[47]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[48]  B. Wu,et al.  Resistive companion battery modeling for electric circuit simulations , 2001 .

[49]  H. White,et al.  Theory of the voltammetric response of electrodes of submicron dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte , 1993 .

[50]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[51]  D. Sauer,et al.  Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries , 2011 .

[52]  Stanley Bruckenstein,et al.  Electrochemical Kinetics: Theoretical and Experimental Aspects , 1967 .

[53]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[54]  Gregory Jerkiewicz,et al.  Theoretical investigations of the oxygen reduction reaction on Pt(111). , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[56]  A. V. van Duin,et al.  Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes , 2006 .

[57]  P. H. Kemp Thermodynamics of Irreversible Electrochemical Processes , 1952, Nature.

[58]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[59]  S. N. Singh,et al.  Nonequilibrium thermodynamics of electrokinetic phenomena , 1993 .

[60]  Benzhuo Lu,et al.  Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. , 2007, The Journal of chemical physics.

[61]  D. Wheeler,et al.  Modeling of lithium-ion batteries , 2003 .

[62]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[63]  H. Orland,et al.  Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation , 1999 .

[64]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[65]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[66]  Stephen J. Harris,et al.  Measurement of three-dimensional microstructure in a LiCoO2 positive electrode , 2011 .

[67]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[68]  Ralph E. White,et al.  A model for the deliverable capacity of the TiS2 electrode in a Li/TiS2 cell , 1993 .

[69]  Martin Z. Bazant,et al.  Electrochemical Thin Films at and above the Classical Limiting Current , 2005, SIAM J. Appl. Math..

[70]  A. Macgillivray,et al.  Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .

[71]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[72]  Thomas W. Chapman,et al.  RESTRICTED DIFFUSION IN BINARY SOLUTIONS , 1973 .

[73]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[74]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[75]  Gerbrand Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004 .

[76]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[77]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[78]  Stephen W. Feldberg,et al.  On the dilemma of the use of the electroneutrality constraint in electrochemical calculations , 2000 .

[79]  P. M. Biesheuvel,et al.  Diffuse charge and Faradaic reactions in porous electrodes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Chao-Yang Wang,et al.  Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling , 2002 .

[81]  S. Kjelstrup,et al.  Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler-Volmer and Nernst Equations , 2003 .

[82]  T. Jacob The Mechanism of Forming H2O from H2 and O2 over a Pt Catalyst via Direct Oxygen Reduction , 2006 .

[83]  Henk Jan Bergveld,et al.  Electronic network modelling of rechargeable NiCd cells and its application to the design of battery management systems , 1999 .

[84]  D. Bedeaux,et al.  Nonequilibrium thermodynamics of multicomponent systems , 1996 .

[85]  Sarma B. K. Vrudhula,et al.  Battery Modeling for Energy-Aware System Design , 2003, Computer.

[86]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[87]  John Newman,et al.  A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase , 2004 .

[88]  K. B. Oldham,et al.  How valid is the electroneutrality approximation in the theory of steady-state voltammetry? , 2001 .

[89]  S. Whitaker The method of volume averaging , 1998 .

[90]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  M. Bazant,et al.  Asymptotic Analysis of Diffuse-Layer Effects on Time-Dependent Interfacial Kinetics , 2000, cond-mat/0006104.