Astro-E2 XRTs adopt Wolter Type-I optics and have nested thin foil structure to enhance their throughput. But this structure allows stray X-rays to come from the sky outside of the XRT field of view. Stray lights contaminate focal plane images, especially in the case of extended source observations. We intend to mount pre-collimators on top of the ASTRO-E2 XRTs to intercept stray lights. According to the success for the engineering model pre-collimator to protect the stray lights efficiently, we proceeded to product flight model pre-collimators. Some improements are made for the flight model (FM) pre-collimator: the introduction of heat forming to make slats accurate cylindrical shape, the change of the groove shape of alignment plates and the change of the housing design. We also established the method of pre-collimator mounting. In X-ray measurements, stray light images and the flux of each stray component at any off-axis angles are measured with/without FM pre-collimator. The secondary only reflection component is reduced down to 3% at a larger off-axis angle than 30', and the backside reflection component becomes more remarkable. On the other hand, X-ray measurement of the effective area at on-axis with/without FM pre-collimator verifies that pre-collimator does not interfere the telescope aperture. In addition, the decrease of XRT field of view is ≤8%, which is the same as the ray-tracing simulations.