Robust information fusion using variable-bandwidth density estimation

We present a new approach to information fusion based on kernel density estimation. Employing a density estimation strategy with ddaptive bandwidths, we develop the variablebandwidth mean shift as an efficient technique for mode detection. Interestingly enough, the mean shifi procedure leads to the definition of a new fusion estimate as the location of the highest mode of a density function which takes into account the uncertainty of the estimates to be fused. We show that the new VariableBandwidth Density-based Fusion (VBDF) is consistent and conservative in the sense defined by Covariance Intersection, while being robust to outliers. At the same time, the new framework can reveal the presence of multiple source models in the input data. Experimental comparisons with the BLUE fision and Covariance Intersection show some of the advantages of our technique.

[1]  Yunmin Zhu,et al.  Unified optimal linear estimation fusion. I. Unified models and fusion rules , 2000, Proceedings of the Third International Conference on Information Fusion.

[2]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[3]  E. R. Sain Multivariate Locally Adaptive Density , 1999 .

[4]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[6]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[7]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[8]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[9]  Pablo O. Arambel,et al.  Estimation under unknown correlation: covariance intersection revisited , 2002, IEEE Trans. Autom. Control..

[10]  Stelios C. A. Thomopoulos,et al.  Distributed Fusion Architectures and Algorithms for Target Tracking , 1997, Proc. IEEE.

[11]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[12]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[13]  J. Marron,et al.  Improved Variable Window Kernel Estimates of Probability Densities , 1995 .

[14]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[15]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[16]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[17]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[18]  Chee-Yee Chong,et al.  Convex Combination and Covariance Intersection Algorithms in Distributed Fusion , 2001 .

[19]  Yaakov Bar-Shalom,et al.  The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Y. Bar-Shalom Tracking and data association , 1988 .