Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know?

Cryptochromes have been suggested to be the primary magnetoreceptor molecules underlying light-dependent magnetic compass detection in migratory birds. Here we review and evaluate (i) what is known about these candidate magnetoreceptor molecules, (ii) what characteristics cryptochrome molecules must fulfil to possibly underlie light-dependent, radical pair based magnetoreception, (iii) what evidence supports the involvement of cryptochromes in magnetoreception, and (iv) what needs to be addressed in future research. The review focuses primarily on our knowledge of cryptochromes in the context of magnetoreception.

[1]  T. Ritz,et al.  Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing , 2010, Journal of The Royal Society Interface.

[2]  Henrik Mouritsen,et al.  Visual but not trigeminal mediation of magnetic compass information in a migratory bird , 2009, Nature.

[3]  I. Schlichting,et al.  The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes , 2009, Proceedings of the National Academy of Sciences.

[4]  T. Carell,et al.  Structural biology of DNA photolyases and cryptochromes. , 2009, Current opinion in structural biology.

[5]  J. Tainer,et al.  Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes , 2009, Proceedings of the National Academy of Sciences.

[6]  Thorsten Ritz,et al.  Magnetic compass of birds is based on a molecule with optimal directional sensitivity. , 2009, Biophysical journal.

[7]  Charlotte Helfrich-Förster,et al.  Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock , 2009, PLoS biology.

[8]  John R. Pannell,et al.  Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana , 2009, Journal of The Royal Society Interface.

[9]  P. Hore,et al.  Chemical magnetoreception in birds: The radical pair mechanism , 2009, Proceedings of the National Academy of Sciences.

[10]  E. Getzoff,et al.  Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. , 2009, Angewandte Chemie.

[11]  T. Carell,et al.  Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome , 2008, Proceedings of the National Academy of Sciences.

[12]  I. Schlichting,et al.  Crystal structure and mechanism of a DNA (6-4) photolyase. , 2008, Angewandte Chemie.

[13]  Lixia Zhang,et al.  Wheat Cryptochromes: Subcellular Localization and Involvement in Photomorphogenesis and Osmotic Stress Responses1[OA] , 2008, Plant Physiology.

[14]  A. Read,et al.  Animal Defenses against Infectious Agents: Is Damage Control More Important Than Pathogen Control? , 2008, PLoS biology.

[15]  M. Byrdin,et al.  Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. , 2008, Journal of the American Chemical Society.

[16]  A. Bacher,et al.  Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase , 2008, Proceedings of the National Academy of Sciences.

[17]  Steven M. Reppert,et al.  Cryptochrome mediates light-dependent magnetosensitivity in Drosophila , 2008, Nature.

[18]  E. Wolf,et al.  Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells , 2008, PLoS biology.

[19]  Ilya Kuprov,et al.  Chemical compass model of avian magnetoreception , 2008, Nature.

[20]  Henrik Mouritsen,et al.  Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin , 2008, PloS one.

[21]  A. Sancar,et al.  Animal Type 1 Cryptochromes , 2008, Journal of Biological Chemistry.

[22]  Patrick Emery,et al.  Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation , 2008, PLoS biology.

[23]  J. Burnell,et al.  Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. , 2007, Toxicon : official journal of the International Society on Toxinology.

[24]  Henrik Mouritsen,et al.  Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs , 2007, PloS one.

[25]  D. Hayward,et al.  Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral Acropora millepora , 2007, Science.

[26]  Harald Luksch,et al.  A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds , 2007, PloS one.

[27]  L. Essen,et al.  Cryptochrome 3 from Arabidopsis thaliana , 2007 .

[28]  Tracy R. Denaro,et al.  Formation and Function of Flavin Anion Radical in Cryptochrome 1 Blue-Light Photoreceptor of Monarch Butterfly* , 2007, Journal of Biological Chemistry.

[29]  E. Starr Hazard,et al.  CHARACTERIZATION OF A DINOFLAGELLATE CRYPTOCHROME BLUE‐LIGHT RECEPTOR WITH A POSSIBLE ROLE IN CIRCADIAN CONTROL OF THE CELL CYCLE 1 , 2007 .

[30]  R. Bittl,et al.  The Signaling State of Arabidopsis Cryptochrome 2 Contains Flavin Semiquinone* , 2007, Journal of Biological Chemistry.

[31]  E. Wolf,et al.  A Novel Photoreaction Mechanism for the Circadian Blue Light Photoreceptor Drosophila Cryptochrome* , 2007, Journal of Biological Chemistry.

[32]  Danielle E. Chandler,et al.  Magnetic field effects in Arabidopsis thaliana cryptochrome-1. , 2007, Biophysical journal.

[33]  Filip Vandenbussche,et al.  Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States* , 2007, Journal of Biological Chemistry.

[34]  L. Essen,et al.  Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. , 2007, Journal of molecular biology.

[35]  N. Troje,et al.  Lateralized activation of Cluster N in the brains of migratory songbirds , 2007, The European journal of neuroscience.

[36]  Paul Galland,et al.  Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana , 2007, Planta.

[37]  A. Sancar,et al.  A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity , 2006, Proceedings of the National Academy of Sciences.

[38]  J. Deisenhofer,et al.  Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity , 2006, Proceedings of the National Academy of Sciences.

[39]  T. Carell,et al.  Natural and Non‐natural Antenna Chromophores in the DNA Photolyase from Thermus Thermophilus , 2006, Chembiochem : a European journal of chemical biology.

[40]  Y. Kawarabayasi,et al.  Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. , 2006, Journal of molecular biology.

[41]  A. Penzkofer,et al.  Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. , 2006, Journal of photochemistry and photobiology. B, Biology.

[42]  L. Lopez,et al.  CRY‐DASH gene expression is under the control of the circadian clock machinery in tomato , 2006, FEBS letters.

[43]  W. Wiltschko,et al.  Avian magnetic compass: fast adjustment to intensities outside the normal functional window , 2006, Naturwissenschaften.

[44]  D. Vallone,et al.  Molecular Analysis of Clock Gene Expression in the Avian Brain , 2006, Chronobiology international.

[45]  Steven M. Reppert,et al.  The two CRYs of the butterfly , 2005, Current Biology.

[46]  L. Rogers,et al.  Chickens orient using a magnetic compass , 2005, Current Biology.

[47]  Henrik Mouritsen,et al.  Magnetoreception and its use in bird navigation , 2005, Current Opinion in Neurobiology.

[48]  Henrik Mouritsen,et al.  Night-vision brain area in migratory songbirds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Bouly,et al.  Light-induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with in Vivo Function* , 2005, Journal of Biological Chemistry.

[50]  S. Weber Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. , 2005, Biochimica et biophysica acta.

[51]  Thorsten Ritz,et al.  Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field , 2005, Naturwissenschaften.

[52]  Christiane R Timmel,et al.  A study of spin chemistry in weak magnetic fields , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  T. Carell,et al.  Crystal Structure of a Photolyase Bound to a CPD-Like DNA Lesion After in Situ Repair , 2004, Science.

[54]  Bernd Schierwater,et al.  Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass , 2004, Naturwissenschaften.

[55]  H. Mouritsen,et al.  Migratory Birds Use Head Scans to Detect the Direction of the Earth's Magnetic Field , 2004, Current Biology.

[56]  Henrik Mouritsen,et al.  Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Chad A Brautigam,et al.  Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Sancar Regulation of the Mammalian Circadian Clock by Cryptochrome* , 2004, Journal of Biological Chemistry.

[59]  H. Komori,et al.  DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction. , 2004, Acta crystallographica. Section D, Biological crystallography.

[60]  Patrick Emery,et al.  Roles of the Two Drosophila CRYPTOCHROME Structural Domains in Circadian Photoreception , 2004, Science.

[61]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[62]  K. Kuma,et al.  Identification of cryptochrome DASH from vertebrates , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[63]  W. Cochran,et al.  Migrating Songbirds Recalibrate Their Magnetic Compass Daily from Twilight Cues , 2004, Science.

[64]  W. Wiltschko,et al.  Light-dependent magnetoreception in birds: analysis of the behaviour under red light after pre-exposure to red light , 2004, Journal of Experimental Biology.

[65]  Wolfgang Wiltschko,et al.  Light-dependent magnetoreception in birds: interaction of at least two different receptors , 2004, Naturwissenschaften.

[66]  A. Peeters,et al.  The Role of Cryptochrome 2 in Flowering in Arabidopsis1 , 2003, Plant Physiology.

[67]  Chentao Lin,et al.  Cryptochrome structure and signal transduction. , 2003, Annual review of plant biology.

[68]  Thorsten Ritz,et al.  Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor , 2003 .

[69]  K. Beyenbach Transport mechanisms of diuresis in Malpighian tubules of insects , 2003, Journal of Experimental Biology.

[70]  W. Wiltschko,et al.  Magnetic orientation in birds: non–compass responses under monochromatic light of increased intensity , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  方福德 构成性表达(constitutive expression) , 2003 .

[72]  A. Sancar Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors , 2003 .

[73]  Markus Mueller,et al.  Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. , 2003, European journal of biochemistry.

[74]  T. Kleine,et al.  An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. , 2003, The Plant journal : for cell and molecular biology.

[75]  Baldissera Giovani,et al.  Light-induced electron transfer in a cryptochrome blue-light photoreceptor , 2003, Nature Structural Biology.

[76]  Aziz Sancar,et al.  Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. , 2003, Chemical reviews.

[77]  S. Åkesson,et al.  Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. , 2002, The Journal of experimental biology.

[78]  R. Haque,et al.  Dual regulation of cryptochrome 1 mRNA expression in chicken retina by light and circadian oscillators , 2002, Neuroreport.

[79]  Wolfgang Wiltschko,et al.  Magnetic compass orientation in birds and its physiological basis , 2002, Naturwissenschaften.

[80]  B. Brocklehurst Magnetic fields and radical reactions: recent developments and their role in nature. , 2002, Chemical Society reviews.

[81]  Ralf Stanewsky,et al.  Clock mechanisms in Drosophila , 2002, Cell and Tissue Research.

[82]  Chentao Lin Blue Light Receptors and Signal Transduction Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000646. , 2002, The Plant Cell Online.

[83]  Robert K. Adair,et al.  Electricity and Magnetism in Biological Systems , 2002 .

[84]  Michael J. Bailey,et al.  Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors , 2002, FEBS letters.

[85]  Z. Fu,et al.  Molecular Cloning and Circadian Regulation of Cryptochrome Genes in Japanese Quail (Coturnix coturnix japonica) , 2002, Journal of biological rhythms.

[86]  T. Imaizumi,et al.  Cryptochrome Light Signals Control Development to Suppress Auxin Sensitivity in the Moss Physcomitrella patens Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010388. , 2002, The Plant Cell Online.

[87]  O. Froy,et al.  Redox potential: differential roles in dCRY and mCRY1 functions. , 2002, Current biology : CB.

[88]  T. Todo,et al.  Photoactivation of the flavin cofactor in Xenopus laevis (6–4) photolyase: Observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Haisun Zhu,et al.  A putative flavin electron transport pathway is differentially utilized in Xenopus CRY1 and CRY2 , 2001, Current Biology.

[90]  S. Yokoyama,et al.  Crystal structure of thermostable DNA photolyase: Pyrimidine-dimer recognition mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  W. Wiltschko,et al.  Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. , 2001, The Journal of experimental biology.

[92]  W. Wiltschko,et al.  Magnetic compass orientation of European robins under 565 nm green light , 2001, Naturwissenschaften.

[93]  C. Kyriacou,et al.  Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY , 2001, Current Biology.

[94]  Yan Liu,et al.  The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response , 2000, Cell.

[95]  T. Todo,et al.  Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[96]  J. Deisenhofer DNA photolyases and cryptochromes. , 2000, Mutation research.

[97]  T. Todo,et al.  Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. , 2000, Nucleic acids research.

[98]  R. Astumian,et al.  Biological sensing of small field differences by magnetically sensitive chemical reactions , 2000, Nature.

[99]  A. Eker,et al.  Intraprotein radical transfer during photoactivation of DNA photolyase , 2000, Nature.

[100]  K Kume,et al.  Interacting molecular loops in the mammalian circadian clock. , 2000, Science.

[101]  R. Adair Static and low-frequency magnetic field effects: health risks and therapies , 2000 .

[102]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[103]  T. Kanegae,et al.  Cryptochrome Nucleocytoplasmic Distribution and Gene Expression Are Regulated by Light Quality in the Fern Adiantum capillus-veneris , 2000, Plant Cell.

[104]  C. Weitz,et al.  Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. , 1999, Science.

[105]  Frank Schaeffel,et al.  Light- and focus-dependent expression of the transcription factor ZENK in the chick retina , 1999, Nature Neuroscience.

[106]  Steven M Reppert,et al.  mCRY1 and mCRY2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop , 1999, Cell.

[107]  Xiaolan Zhang,et al.  An Extraretinally Expressed Insect Cryptochrome with Similarity to the Blue Light Photoreceptors of Mammals and Plants , 1999, The Journal of Neuroscience.

[108]  A. Cashmore,et al.  Cryptochromes: blue light receptors for plants and animals. , 1999, Science.

[109]  W. Wiltschko,et al.  The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula , 1999, Journal of Comparative Physiology A.

[110]  D. V. Leenen,et al.  Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms , 1999, Nature.

[111]  Jeffrey C. Hall,et al.  CRY, a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity , 1998, Cell.

[112]  A. Yasui,et al.  Characterization of photolyase/blue-light receptor homologs in mouse and human cells. , 1998, Nucleic acids research.

[113]  C. M. Araki,et al.  Motion-sensitive neurons in the chick retina: a study using Fos immunohistochemistry , 1998, Brain Research.

[114]  A. Sancar,et al.  Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[115]  H. Mouritsen Redstarts, Phoenicurus phoenicurus , can orient in a true-zero magnetic field , 1998, Animal Behaviour.

[116]  T. Mockler,et al.  Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Satoru Kanai,et al.  Molecular Evolution of the Photolyase–Blue-Light Photoreceptor Family , 1997, Journal of Molecular Evolution.

[118]  A. Yasui,et al.  Crystal structure of DMA photolyase from Anacystis nidulans , 1997, Nature Structural Biology.

[119]  A. Cashmore,et al.  The cryptochrome family of photoreceptors , 1997 .

[120]  F. Nottebohm,et al.  Motor-driven gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[121]  D. S. Hsu,et al.  Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. , 1996, Biochemistry.

[122]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[123]  J. Walleczek,et al.  Model for magnetic field effects on radical pair recombination in enzyme kinetics. , 1996, Biophysical journal.

[124]  M. Clarke,et al.  An immunological study of predation on hatchery-reared, juvenile red drum (Sciaenops ocellatus, Linnaeus): description of an ELISA and predator-prey studies in nature , 1996 .

[125]  T. Todo,et al.  Similarity Among the Drosophila (6-4)Photolyase, a Human Photolyase Homolog, and the DNA Photolyase-Blue-Light Photoreceptor Family , 1996, Science.

[126]  M. Ahmad,et al.  Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. , 1995, The Plant journal : for cell and molecular biology.

[127]  W. Wiltschko,et al.  Migratory orientation of European Robins is affected by the wavelength of light as well as by a magnetic pulse , 1995, Journal of Comparative Physiology A.

[128]  M. Ahmad,et al.  Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1 , 1995, Science.

[129]  J. Deisenhofer,et al.  Crystal structure of DNA photolyase from Escherichia coli. , 1995, Science.

[130]  P. Lefebvre,et al.  Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family , 1995, Plant Molecular Biology.

[131]  A. Sancar,et al.  Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. , 1995, Biochemistry.

[132]  M. Cynader,et al.  Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268 , 1995, Visual Neuroscience.

[133]  Wiltschko,et al.  MELATONIN IS CRUCIAL FOR THE MIGRATORY ORIENTATION OF PIED FLYCATCHERS (FICEDULA HYPOLEUCA PALLAS) , 1994, The Journal of experimental biology.

[134]  T. Harkins,et al.  Magnetic field effects on B12 ethanolamine ammonia lyase: evidence for a radical mechanism. , 1994, Science.

[135]  A. Cashmore,et al.  HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor , 1993, Nature.

[136]  Wolfgang Wiltschko,et al.  Red light disrupts magnetic orientation of migratory birds , 1993, Nature.

[137]  K. Kawamura,et al.  Differential expression of c-fos mRNA in rat retinal cells: Regulation by light/dark cycle , 1993, Neuron.

[138]  A. Sancar,et al.  Energy transfer (deazaflavin-->FADH2) and electron transfer (FADH2-->T <> T) kinetics in Anacystis nidulans photolyase. , 1992, Biochemistry.

[139]  D. Vicario,et al.  Song presentation induces gene expression in the songbird forebrain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[140]  A. Sancar,et al.  Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. , 1991, Biochemistry.

[141]  P. Worley,et al.  Constitutive expression of zif268 in neocortex is regulated by synaptic activity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[142]  A. Sancar,et al.  Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase. , 1990, Biochemistry.

[143]  M. S. Jorns,et al.  Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. , 1990, Biochemistry.

[144]  R. Faull,et al.  The use of c-fos as a metabolic marker in neuronal pathway tracing , 1989, Journal of Neuroscience Methods.

[145]  Klaus Schulten,et al.  Magnetic Field Effects in Chemistry and Biology , 1982 .

[146]  H. Ninnemann Blue Light Photoreceptors , 1980 .

[147]  J. Gressel,et al.  BLUE LIGHT PHOTORECEPTION , 1979 .

[148]  K. Fite,et al.  Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[149]  H. Karten,et al.  A direct thalamo-cerebellar pathway in pigeon and catfish , 1976, Brain Research.

[150]  W. Wiltschko,et al.  Magnetic Compass of European Robins , 1972, Science.

[151]  Stephen T. Emlen,et al.  A TECHNIQUE FOR RECORDING MIGRATORY ORIENTATION OF CAPTIVE BIRDS , 1966 .

[152]  Aseem Prakash,et al.  Advocacy Organizations and Collective Action: Conclusions and future research , 2010 .

[153]  N. Doltsinis,et al.  Advances in Solid State Physics , 2009 .

[154]  A. Sancar,et al.  Structure and function of animal cryptochromes. , 2007, Cold Spring Harbor symposia on quantitative biology.

[155]  Minoru Kanehisa,et al.  Identification of a new cryptochrome class. Structure, function, and evolution. , 2003, Molecular cell.

[156]  M. Gerstein,et al.  A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development , 2003 .

[157]  A. Sancar,et al.  Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. , 2000, Annual review of biochemistry.

[158]  W. Wiltschko,et al.  Orientation Behavior of Garden Warblers (Sylvia borin) Under Monochromatic Light of Various Wavelengths , 2000 .

[159]  W. Wiltschko,et al.  Light-Dependent Magnetoreception in Birds: Does Directional Information Change with Light Intensity? , 2000, Naturwissenschaften.

[160]  A. Sancar,et al.  Origin of the transient electron paramagnetic resonance signals in DNA photolyase. , 1999, Biochemistry.

[161]  W. Wiltschko,et al.  Effect of Wavelength of Light and Pulse Magnetisation on Different Magnetoreception Systems in a Migratory Bird , 1997 .

[162]  W. Wiltschko,et al.  Magnetic orientation in birds , 1996, The Journal of experimental biology.

[163]  Dr. Roswitha Wiltschko,et al.  Magnetic Orientation in Animals , 1995, Zoophysiology.

[164]  C. Grissom Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination , 1995 .

[165]  T. Harkins,et al.  The Magnetic Field Dependent Step in B12 Ethanolamine Ammonia Lyase Is Radical-Pair Recombination , 1995 .

[166]  Klaus Schulten,et al.  A Biomagnetic Sensory Mechanism Based on Magnetic Field Modulated Coherent Electron Spin Motion , 1978 .

[167]  W. Wiltschko Further Analysis of the Magnetic Compass of Migratory Birds , 1978 .

[168]  W. Wooster,et al.  Crystal structure of , 2005 .